Nous étudions le schéma de Hilbert des courbes lisses connexes sur une variété de del Pezzo lisse de dimension 3. Nous montrons qu’aucune courbe dégénérée, c’est-à-dire, aucune courbe contenue dans une section hyperplane de , se déforme en une courbe non-dégénérée, si les deux conditions suivantes sont satisfaites : (i) et (ii) pour chaque droite sur telle que , le fibré normal de dans est trivial. Par conséquent, nous prouvons un analogue (pour ) d’une conjecture de J. O. Kleppe, qui concerne les composantes non-réduites du schéma de Hilbert des courbes dans l’espace projectif de dimension 3.
We study the Hilbert scheme of smooth connected curves on a smooth del Pezzo -fold . We prove that any degenerate curve , i.e. any curve contained in a smooth hyperplane section of , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) and (ii) for every line on such that , the normal bundle is trivial (i.e. ). As a consequence, we prove an analogue (for ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components of the Hilbert scheme of curves in the projective -space .
@article{AIF_2010__60_4_1289_0, author = {Nasu, Hirokazu}, title = {Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {1289-1316}, doi = {10.5802/aif.2555}, zbl = {1198.14004}, mrnumber = {2722242}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_4_1289_0} }
Nasu, Hirokazu. Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold. Annales de l'Institut Fourier, Tome 60 (2010) pp. 1289-1316. doi : 10.5802/aif.2555. http://gdmltest.u-ga.fr/item/AIF_2010__60_4_1289_0/
[1] Obstructions to deforming a space curve, Trans. Amer. Math. Soc., Tome 267 (1981), pp. 83-94 | Article | MR 621974 | Zbl 0477.14008
[2] D’autres composantes non réduites de , Math. Ann., Tome 277 (1987), pp. 433-446 | Article | MR 891584 | Zbl 0635.14006
[3] Determining obstructions for space curves, with applications to non-reduced components of the Hilbert scheme, J. Reine Angew. Math., Tome 439 (1993), pp. 11-44 | Article | MR 1219693 | Zbl 0765.14015
[4] On the structure of polarized manifolds with total deficiency one. I, J. Math. Soc. Japan, Tome 32 (1980), pp. 709-725 | Article | MR 589109 | Zbl 0474.14017
[5] On the structure of polarized manifolds with total deficiency one. II, J. Math. Soc. Japan, Tome 33 (1981), pp. 415-434 | Article | MR 620281 | Zbl 0474.14018
[6] Fano threefolds. I, Math. USSR-Izvstija, Tome 11 (1977) no. 3, pp. 485-527 | Article | MR 463151 | Zbl 0382.14013
[7] Anticanonical models of three-dimensional algebraic varieties, Current problems in mathematics, J. Soviet Math., Tome 13 (1980), pp. 745-814 | Article | MR 537685 | Zbl 0428.14016
[8] Non-reduced components of the Hilbert scheme of smooth space curves., Space curves, Proc. Conf., Rocca di Papa/Italy 1985, Lect. Notes in Math. 1266, 181–207 (1987) | MR 908714 | Zbl 0631.14022
[9] Liaison of families of subschemes in , Algebraic curves and projective geometry (Trento, 1988), Springer, Berlin (Lecture Notes in Math.) Tome 1389 (1989), pp. 128-173 | MR 1023396 | Zbl 0697.14003
[10] The Hilbert scheme of space curves of small diameter, Annales de l’institut Fourier, Tome 56 (2006) no. 5, pp. 1297-1335 | Article | Numdam | MR 2273858 | Zbl 1117.14006
[11] Rational curves on algebraic varieties, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 32 (1996) | MR 1440180 | Zbl 0877.14012
[12] Cubic forms, North-Holland Publishing Co., Amsterdam, North-Holland Mathematical Library, Tome 4 (1986) (Algebra, geometry, arithmetic, Translated from the Russian by M. Hazewinkel) | MR 833513 | Zbl 0582.14010
[13] Obstructions to deforming curves on a 3-fold. I. A generalization of Mumford’s example and an application to Hom schemes, J. Algebraic Geom., Tome 18 (2009) no. 4, pp. 691-709 | Article | MR 2524595 | Zbl 1181.14031
[14] Further pathologies in algebraic geometry, Amer. J. Math., Tome 84 (1962), pp. 642-648 | Article | MR 148670 | Zbl 0114.13106
[15] Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, Publ. Res. Inst. Math. Sci., Tome 42 (2006) no. 1, pp. 117-141 | Article | MR 2215438 | Zbl 1100.14002