Soit un corps de nombres. Soit un ensemble fini de places de contenant toutes les places archimédiennes. Soit l’anneau des -entiers de . Dans cet article on considère les endomorphismes de degré de la droite projective, définie sur , avec bonne réduction en dehors de . On démontre qu’il n’existe qu’un nombre fini de tels endomorphismes, à conjugaison par l’action de près, qui admettent un point périodique -rationnel d’ordre . De plus, toutes les classes, sauf un nombre fini, ayant un point périodique -rationnel d’ordre , sont paramétrées par une courbe irréductible.
Let be a number field. Let be a finite set of places of containing all the archimedean ones. Let be the ring of -integers of . In the present paper we consider endomorphisms of of degree , defined over , with good reduction outside . We prove that there exist only finitely many such endomorphisms, up to conjugation by , admitting a periodic point in of order . Also, all but finitely many classes with a periodic point in of order are parametrized by an irreducible curve.
@article{AIF_2010__60_3_953_0, author = {Canci, Jung Kyu}, title = {Rational periodic points for quadratic maps}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {953-985}, doi = {10.5802/aif.2544}, zbl = {pre05763357}, mrnumber = {2680821}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_3_953_0} }
Canci, Jung Kyu. Rational periodic points for quadratic maps. Annales de l'Institut Fourier, Tome 60 (2010) pp. 953-985. doi : 10.5802/aif.2544. http://gdmltest.u-ga.fr/item/AIF_2010__60_3_953_0/
[1] Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, Tome 86 (2001) no. 2, pp. 175-195 | Article | MR 1813109 | Zbl 0978.37039
[2] Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. (3), Tome 24 (1972), pp. 385-394 | Article | MR 306119 | Zbl 0248.12002
[3] Heights in Diophantine Geometry, Cambridge University Press, Cambridge, New Mathematical Monographs (2006) no. 4 | MR 2216774 | Zbl 1115.11034
[4] Cycles for rational maps with good reduction outside a prescribed set, Monatsh. Math., Tome 149 (2007) no. 4, pp. 265-287 | Article | MR 2284648 | Zbl 1171.11041
[5] A lower bound for the height of a rational function at -unit points, Monatsh. Math., Tome 144 (2005) no. 3, pp. 203-224 | Article | MR 2130274 | Zbl 1086.11035
[6] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Tome 326 (2003) no. 1, pp. 43-73 | Article | MR 1981611 | Zbl 1032.37029
[7] Effective finiteness results for binary forms with given discriminant, Compositio Math., Tome 79 (1991) no. 2, pp. 169-204 | Numdam | MR 1117339 | Zbl 0746.11020
[8] On sums of -units and linear recurrences, Compositio Math., Tome 53 (1984) no. 2, pp. 225-244 | Numdam | MR 766298 | Zbl 0547.10008
[9] Diophantine Geometry, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 201 (2000) (An introduction) | MR 1745599 | Zbl 0948.11023
[10] Algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 211 (2002) | MR 1878556 | Zbl 0984.00001
[11] Number fields, Springer-Verlag, New York (1977) (Universitext) | MR 457396 | Zbl 0383.12001
[12] Geometry and dynamics of quadratic rational maps, Experiment. Math., Tome 2 (1993) no. 1, pp. 37-83 (With an appendix by the author and Lei Tan) | MR 1246482 | Zbl 0922.58062
[13] Rational periodic points of rational functions, Internat. Math. Res. Notices (1994) no. 2, pp. 97-110 | Article | MR 1264933 | Zbl 0819.11045
[14] Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math., Tome 461 (1995), pp. 81-122 | Article | MR 1324210 | Zbl 0813.11059
[15] The growth condition for recurrence sequences (1982) (Rep. No. 82-0041)
[16] Diophantine Approximation, Springer, Berlin, Lecture Notes in Mathematics, Tome 785 (1980) | MR 568710 | Zbl 0421.10019
[17] Diophantine approximations and Diophantine equations, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1467 (1991) | MR 1176315 | Zbl 0754.11020
[18] Lectures on the Mordell-Weil Theorem, Friedr. Vieweg & Sohn, Braunschweig, Aspects of Mathematics (1997) (Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, with a foreword by Brown and Serre) | MR 1757192 | Zbl 0676.14005
[19] The space of rational maps on , Duke Math. J., Tome 94 (1998) no. 1, pp. 41-77 | Article | MR 1635900 | Zbl 0966.14031
[20] The arithmetic of dynamical systems, Springer, New York, Graduate Texts in Mathematics, Tome 241 (2007) | MR 2316407 | Zbl 1130.37001