Galois actions on Néron models of Jacobians
[L’action Galoisienne sur le modèle de Néron d’une Jacobienne]
Halle, Lars H.
Annales de l'Institut Fourier, Tome 60 (2010), p. 853-903 / Harvested from Numdam

Soit X une courbe lisse définie sur le corps des fractions K d’un anneau de valuation discrète R. Nous étudions une filtration naturelle sur la fibre spéciale du modèle de Néron de la Jacobienne de X par des sous-schémas en groupes fermés unipotents. Nous démontrons que les sauts de cette filtration ne dépendent que du type de la fibre spéciale du modèle minimal régulier à croisements normaux stricts de X sur R. En particulier, les sauts sont indépendants de la caractéristique résiduelle. Ensuite, nous obtenons des informations plus précises sur les sauts, et nous les calculons pour chaque type de fibre possible pour les courbes de genre 1 et 2.

Let X be a smooth curve defined over the fraction field K of a complete discrete valuation ring R. We study a natural filtration of the special fiber of the Néron model of the Jacobian of X by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for X over R, and in particular are independent of the residue characteristic. Furthermore, we obtain information about where these jumps occur. We also compute the jumps for each of the finitely many possible fiber types for curves of genus 1 and 2.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/aif.2541
Classification:  14D06
Mots clés: modèles des courbes, modèles de Néron, singularitś quotient cycliques modérées, actions de groupe sur la cohomologie
@article{AIF_2010__60_3_853_0,
     author = {Halle, Lars H.},
     title = {Galois actions on N\'eron models of Jacobians},
     journal = {Annales de l'Institut Fourier},
     volume = {60},
     year = {2010},
     pages = {853-903},
     doi = {10.5802/aif.2541},
     zbl = {1206.14023},
     mrnumber = {2680818},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2010__60_3_853_0}
}
Halle, Lars H. Galois actions on Néron models of Jacobians. Annales de l'Institut Fourier, Tome 60 (2010) pp. 853-903. doi : 10.5802/aif.2541. http://gdmltest.u-ga.fr/item/AIF_2010__60_3_853_0/

[1] Artin, M.; Winters, G. Degenerate fibres and stable reduction of curves, Topology, Tome 10 (1971), pp. 373-383 | Article | MR 476756 | Zbl 0196.24403

[2] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel Néron models, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 21 (1990) | MR 1045822 | Zbl 0705.14001

[3] Chai, Ching-Li Néron models for semiabelian varieties: congruence and change of base field, Asian J. Math., Tome 4 (2000) no. 4, pp. 715-736 (Loo-Keng Hua: a great mathematician of the twentieth century) | MR 1870655 | Zbl 1100.14511

[4] Conrad, Brian; Edixhoven, Bas; Stein, William J 1 (p) has connected fibers, Doc. Math., Tome 8 (2003), p. 331-408 (electronic) | MR 2029169 | Zbl 1101.14311

[5] Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 75-109 | Article | Numdam | MR 262240 | Zbl 0181.48803

[6] Deschamps, Mireille Réduction semi-stable, in Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Société Mathématique de France, Paris, Astérisque, Tome 86 (1981) | MR 642675 | Zbl 0505.14008

[7] Donovan, Peter The Lefschetz-Riemann-Roch formula, Bull. Soc. Math. France, Tome 97 (1969), pp. 257-273 | Numdam | MR 263834 | Zbl 0185.49401

[8] Edixhoven, Bas Néron models and tame ramification, Compositio Math., Tome 81 (1992) no. 3, pp. 291-306 | Numdam | MR 1149171 | Zbl 0759.14033

[9] Grothendieck, Alexander Cohomologie l-adique et fonctions L, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 589 (1977) (Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), édité par Luc Illusie) | MR 491704

[10] Halle, Lars Halvard Stable reduction of curves and tame ramification, KTH, Stockholm (2007) (Ph. D. Thesis)

[11] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York (1977) (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0367.14001

[12] Köck, Bernhard The Grothendieck-Riemann-Roch theorem for group scheme actions, Ann. Sci. École Norm. Sup. (4), Tome 31 (1998) no. 3, pp. 415-458 | Numdam | MR 1621405 | Zbl 0951.14029

[13] Kodaira, K. On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563–626; ibid., Tome 78 (1963), pp. 1-40 | MR 184257 | Zbl 0118.15802

[14] Lipman, Joseph Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 195-279 | Article | Numdam | MR 276239 | Zbl 0181.48903

[15] Liu, Qing Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, Oxford Graduate Texts in Mathematics, Tome 6 (2002) | MR 1917232 | Zbl 0996.14005

[16] Namikawa, Yukihiko; Ueno, Kenji The complete classification of fibres in pencils of curves of genus two, Manuscripta Math., Tome 9 (1973), pp. 143-186 | Article | MR 369362 | Zbl 0263.14007

[17] Ogg, A. P. On pencils of curves of genus two, Topology, Tome 5 (1966), pp. 355-362 | Article | MR 201437 | Zbl 0145.17802

[18] Serre, Jean-Pierre Linear representations of finite groups, Springer-Verlag, New York (1977) (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | MR 450380

[19] Serre, Jean-Pierre Local fields, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 67 (1979) | MR 554237 | Zbl 0423.12016

[20] Winters, Gayn B. On the existence of certain families of curves, Amer. J. Math., Tome 96 (1974), pp. 215-228 | Article | MR 357406 | Zbl 0334.14004