L’anneau de cohomologie d’un groupe fini, modulo un nombre premier, peut être calculé à l’aide d’un ordinateur, comme l’a montré Carlson. Ici « calculer » signifie trouver une présentation en termes de générateurs et relations, et seul l’anneau (gradué) sous-jacent est en jeu. Nous proposons une méthode pour déterminer certains éléments de structure supplémentaires : classes de Stiefel-Whitney et opérations de Steenrod. Les calculs sont concrètement menés pour une centaine de groupes (les résultats sont consultables en détails sur Internet).
Nous donnons ensuite une application : à l’aide des nouvelles informations obtenues, nous pouvons dans de nombreux cas déterminer quelles sont les classes de cohomologie qui sont supportées par des cycles algébriques.
The cohomology ring of a finite group, with coefficients in a finite field, can be computed by a machine, as Carlson has showed. Here “compute” means to find a presentation in terms of generators and relations, and involves only the underlying (graded) ring. We propose a method to determine some of the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The calculations are explicitly carried out for about one hundred groups (the results can be consulted on the Internet).
Next, we give an application: thanks to the new information gathered, we can in many cases determine which cohomology classes are supported by algebraic varieties.
@article{AIF_2010__60_2_565_0, author = {Guillot, Pierre}, title = {The computation of Stiefel-Whitney classes}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {565-606}, doi = {10.5802/aif.2533}, zbl = {pre05726205}, mrnumber = {2667787}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_2_565_0} }
Guillot, Pierre. The computation of Stiefel-Whitney classes. Annales de l'Institut Fourier, Tome 60 (2010) pp. 565-606. doi : 10.5802/aif.2533. http://gdmltest.u-ga.fr/item/AIF_2010__60_2_565_0/
[1] An introduction to Gröbner bases, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 3 (1994) | MR 1287608 | Zbl 0803.13015
[2] Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. (1961) no. 9, pp. 23-64 | Article | Numdam | MR 148722 | Zbl 0107.02303
[3] Steenrod operations in Chow theory, Trans. Amer. Math. Soc., Tome 355 (2003) no. 5, p. 1869-1903 (electronic) | Article | MR 1953530 | Zbl 1045.55005
[4] personal webpage (http://www.math.uga.edu/~lvalero/cohointro.html)
[5] Calculating group cohomology: tests for completion, J. Symbolic Comput., Tome 31 (2001) no. 1-2, pp. 229-242 (Computational algebra and number theory (Milwaukee, WI, 1996)) | Article | MR 1806218 | Zbl 0979.20047
[6] Cohomology rings of finite groups, Kluwer Academic Publishers, Dordrecht, Algebras and Applications, Tome 3 (2003) (With an appendix: Calculations of cohomology rings of groups of order dividing 64 by Carlson, Valeri-Elizondo and Zhang) | MR 2028960 | Zbl 1056.20039
[7] On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc., Tome 115 (1965), pp. 180-193 | Article | MR 212099 | Zbl 0133.28403
[8] Chern classes of certain representations of symmetric groups, Trans. Amer. Math. Soc., Tome 245 (1978), pp. 309-330 | Article | MR 511412 | Zbl 0402.20009
[9] Homology of classical groups over finite fields and their associated infinite loop spaces, Springer, Berlin, Lecture Notes in Mathematics, Tome 674 (1978) | MR 513424 | Zbl 0403.55010
[10] Characteristic classes of direct image bundles for covering maps, Ann. of Math. (2), Tome 125 (1987) no. 1, pp. 1-92 | Article | MR 873377 | Zbl 0628.55010
[11] personal webpage (http://www.math.uni-wuppertal.de/~green/Coho_v2/)
[12] personal webpage (http://www-irma.u-strasbg.fr/~guillot/research/cohomology_of_groups/index.html)
[13] The Chow rings of and Spin(7), J. Reine Angew. Math., Tome 604 (2007), pp. 137-158 | Article | MR 2320315 | Zbl 1122.14005
[14] Addendum to the paper: “The Chow rings of and ” [J. Reine Angew. Math. 604 (2007), 137–158;], J. Reine Angew. Math., Tome 619 (2008), pp. 233-235 | Article | MR 2414952 | Zbl 1142.14303
[15] Classes de Stiefel-Whitney de formes quadratiques et de représentations galoisiennes réelles, Invent. Math., Tome 78 (1984) no. 2, pp. 223-256 | Article | MR 767193 | Zbl 0557.12014
[16] The Evens-Kahn formula for the total Stiefel-Whitney class, Proc. Amer. Math. Soc., Tome 91 (1984) no. 2, pp. 309-313 | Article | MR 740192 | Zbl 0514.57005
[17] Transfers in the group of multiplicative units of the classical cohomology ring and Stiefel-Whitney classes, Publ. Res. Inst. Math. Sci., Tome 25 (1989) no. 1, pp. 59-74 | Article | MR 999350 | Zbl 0687.55005
[18] Sur les espaces fonctionnels dont la source est le classifiant d’un -groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, pp. 135-244 (With an appendix by Michel Zisman) | Article | Numdam | MR 1179079 | Zbl 0857.55011
[19] The Steenrod algebra and its dual, Ann. of Math. (2), Tome 67 (1958), pp. 150-171 | Article | MR 99653 | Zbl 0080.38003
[20] Characteristic classes, Princeton University Press, Princeton, N. J. (1974) (Annals of Mathematics Studies, No. 76) | MR 440554 | Zbl 0298.57008
[21] The Adams conjecture, Topology, Tome 10 (1971), pp. 67-80 | Article | MR 279804 | Zbl 0219.55013
[22] The cohomology rings of extra-special -groups and the spinor groups, Math. Ann., Tome 194 (1971), pp. 197-212 | Article | MR 290401 | Zbl 0225.55015
[23] Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, University of Chicago Press, Chicago, IL, Chicago Lectures in Mathematics (1994) | MR 1282727 | Zbl 0871.55001
[24] Représentations linéaires des groupes finis, Hermann, Paris (1978) | MR 543841 | Zbl 0407.20003
[25] Characteristic classes and the cohomology of finite groups, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 9 (1986) | MR 878978 | Zbl 0618.20036
[26] The Chow ring of a classifying space, Algebraic -theory (Seattle, WA, 1997), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 67 (1999), pp. 249-281 | MR 1743244 | Zbl 0967.14005