Nous obtenons une classification des feuilletages holomorphes de codimension dans dont l’application de Gauss est dégénérée.
We obtain a classification of codimension one holomorphic foliations on with degenerate Gauss maps.
@article{AIF_2010__60_2_455_0, author = {Fassarella, Thiago}, title = {Foliations with Degenerate Gauss maps on $\mathbb{P}^4$}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {455-487}, doi = {10.5802/aif.2529}, zbl = {1192.37067}, mrnumber = {2667783}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_2_455_0} }
Fassarella, Thiago. Foliations with Degenerate Gauss maps on $\mathbb{P}^4$. Annales de l'Institut Fourier, Tome 60 (2010) pp. 455-487. doi : 10.5802/aif.2529. http://gdmltest.u-ga.fr/item/AIF_2010__60_2_455_0/
[1] Joins and Higher secant varieties, Math. Scand., Tome 61 (1987), pp. 213-222 | MR 947474 | Zbl 0657.14034
[2] Differential geometry of varieties with degenerate Gauss maps, Springer (2004) | MR 2014407
[3] Birational geometry of foliations, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Monografias de Matemática. [Mathematical Monographs] (2000) | MR 1948251 | Zbl 1073.14022
[4] Irreducible Components of the Space of Holomorphic Foliations of Degree Two in CP(n), n 3, The Annals of Mathematics, Tome 143 (1996) no. 3, pp. 577-612 | Article | MR 1394970 | Zbl 0855.32015
[5] Algebraic Reduction Theorem for complex codimension one singular foliations, Comment. Math. Helv., Tome 81 (2006) no. 1, pp. 157-169 | Article | MR 2208802 | Zbl 1095.37019
[6] Feuilletages en droites, équations des eikonales et aures équations différentielles (2005) (arXiv:math.DS/0505601v1) | MR 1760842
[7] Terracini’s lemma and the secant variety of a curve, Proc. London Math. Soc., Tome 3 (1984), pp. 329-339 | Article | MR 748993 | Zbl 0571.14025
[8] On first order congruences of lines of with a fundamental curve, manuscripta mathematica, Tome 106 (2001) no. 1, pp. 101-116 | Article | MR 1860982 | Zbl 1066.14062
[9] Congruences of lines with one-dimensional focal locus, Portugaliae Mathematica, Tome 61 (2004) no. 3, pp. 329-338 | MR 2098024 | Zbl 1067.14049
[10] On first order congruences of lines in with irreducible fundamental surface, Mathematische Nachrichten, Tome 278 (2005) no. 4, pp. 363-378 | Article | MR 2121565 | Zbl 1070.14045
[11] On First Order Congruences of Lines in with Generically Non-reduced Fundamental Surface, Asian Journal of Mathematics, Tome 12 (2008), pp. 56-64 | MR 2415011 | Zbl 1147.14025
[12] On the degree of polar transformations. An approach through logarithmic foliations, Selecta Mathematica, New Series, Tome 13 (2007) no. 2, pp. 239-252 | Article | MR 2361094 | Zbl pre05242806
[13] Ruled varieties: an introduction to algebraic differential geometry, Vieweg Verlag (2001) | MR 1876644 | Zbl 0976.14025
[14] Algebraic geometry and local differential geometry, Ann. Sci. Ecole Norm. Sup.(4), Tome 12 (1979) no. 3, pp. 355-452 | Numdam | MR 559347 | Zbl 0426.14019
[15] Cartan for beginners: differential geometry via moving frames and exterior differential systems, American Mathematical Society (2003) | MR 2003610 | Zbl 1105.53001
[16] Equations de Pfaff algebriques, in Lectures Notes in Mathematics, 708, Springer-Verlag, New York/Berlin (1979) | MR 537038 | Zbl 0477.58002
[17] Über die algebraischen Strahlensysteme, insbesondere über die der ersten und zweiten Ordnung, Abh. K. Preuss. Akad. Wiss. Berlin (1866), pp. 1-120 (also in EE Kummer, Collected Papers, Springer Verlag, 1975)
[18] Sopra i complessi d ordine uno dell , Atti Accad, Gioenia, Serie V, Catania, Tome 3 (1909), pp. 1-15 | Zbl 0020.39301
[19] Sui complessi di rette del primo ordine dello spazio a quattro dimensioni, Rend. Circ. Mat. Palermo, Tome 28 (1909), pp. 353-399 | Article
[20] A tour through some classical theorems on algebraic surfaces, An. Stiint. Univ. Ovidius Constanta Ser. Mat, Tome 5 (1997), pp. 51-78 | MR 1614780 | Zbl 0971.14032
[21] On projective varieties of dimension covered by -spaces, Illinois J.Math., Tome 46 (2002) no. 2, pp. 443-465 | MR 1936928 | Zbl 1052.14065
[22] Completely reducible hypersurfaces in a pencil, Advances in Mathematics, Tome 219 (2008) no. 2, pp. 672-688 | Article | MR 2435653 | Zbl 1146.14005
[23] Surfaces of order 1 in Grassmannians, J. reine angew. Math, Tome 368 (1986), pp. 119-126 | Article | MR 850617 | Zbl 0601.14042
[24] Classification of Bertini’s series of varieties of dimension less than or equal to four, Geometriae Dedicata, Tome 64 (1997) no. 2, pp. 157-191 | Article | MR 1436764 | Zbl 0893.14019
[25] Su una classe di superficie degl’iperspazii legate colle equazioni lineari alle derivate parziali di 2 ordine, Atti della R. Accademia delle Scienze di Torino, Tome 42 (1906), pp. 559-591
[26] Preliminari di una teoria delle varieta luoghi di spazi, Rendiconti del Circolo Matematico di Palermo, Tome 30 (1910) no. 1, pp. 87-121 | Article
[27] Le superficie degli iperspazi con una doppia infinita di curve piane o spaziali, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur, Tome 56 (1920), pp. 75-89
[28] Sulle per cui la varieta degli –seganti ha dimensione minore dell’ ordinario, Rend. Circ. Mat. Palermo, Tome 31 (1911), pp. 392-396 | Article
[29] Tangents and secants of algebraic varieties, American Mathematical Society, Providence, R.I, Translations of mathematical monographs, Tome 127 (1993) | MR 1234494 | Zbl 0795.14018