Harmonic morphisms between Weyl spaces and twistorial maps II
[Morphismes harmoniques entre espaces de Weyl et applications twistorielles, II]
Loubeau, Eric ; Pantilie, Radu
Annales de l'Institut Fourier, Tome 60 (2010), p. 433-453 / Harvested from Numdam

Nous définissons, sur les variétés lisses, les notions de structure presque twistorielle et d’application twistorielle, fournissant ainsi un cadre unifié pour tous les exemples d’espace de twisteurs. La condition de morphisme harmonique apparait naturellement dans les propriétés géométriques des applications twistorielles submersives entre espaces de Weyl de faible dimension, équipés d’une structure presque twistorielle non-intégrable due à Eells et Salamon. Ceci mène à la caractérisation twistorielle des morphismes harmoniques entre espaces de Weyl de dimension quatre et trois. De plus, nous donnons une description complète des applications twistorielles à fibres unidimensionelles d’un espace de Weyl de dimension quatre, équipé de la structure presque twistorielle non-intégrable due à Eells et Salamon.

We define, on smooth manifolds, the notions of almost twistorial structure and twistorial map, thus providing a unified framework for all known examples of twistor spaces. The condition of being a harmonic morphism naturally appears among the geometric properties of submersive twistorial maps between low-dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure due to Eells and Salamon. This leads to the twistorial characterisation of harmonic morphisms between Weyl spaces of dimensions four and three. Also, we give a thorough description of the twistorial maps with one-dimensional fibres from four-dimensional Weyl spaces endowed with the almost twistorial structure of Eells and Salamon.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/aif.2528
Classification:  53C43,  53C28
Mots clés: morphisme harmonique, espace de Weyl, application twistorielle
@article{AIF_2010__60_2_433_0,
     author = {Loubeau, Eric and Pantilie, Radu},
     title = {Harmonic morphisms between Weyl spaces and twistorial maps II},
     journal = {Annales de l'Institut Fourier},
     volume = {60},
     year = {2010},
     pages = {433-453},
     doi = {10.5802/aif.2528},
     zbl = {1203.58005},
     mrnumber = {2667782},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2010__60_2_433_0}
}
Loubeau, Eric; Pantilie, Radu. Harmonic morphisms between Weyl spaces and twistorial maps II. Annales de l'Institut Fourier, Tome 60 (2010) pp. 433-453. doi : 10.5802/aif.2528. http://gdmltest.u-ga.fr/item/AIF_2010__60_2_433_0/

[1] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M. Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, Tome 362 (1978), pp. 425-461 | Article | MR 506229 | Zbl 0389.53011

[2] Baird, P.; Wood, J. C. Harmonic morphisms between Riemannian manifolds, Oxford Univ. Press, Oxford, London Math. Soc. Monogr. (N.S.) (2003) no. 29 | MR 2044031 | Zbl 1055.53049

[3] Bryant, R. L. Lie groups and twistor spaces, Duke Math. J., Tome 52 (1985), pp. 223-261 | Article | MR 791300 | Zbl 0582.58011

[4] Burns, D.; Burstall, F. E.; De Bartolomeis, P.; Rawnsley, J. Stability of harmonic maps of Kähler manifolds, J. Differential Geom., Tome 30 (1989), pp. 579-594 | MR 1010173 | Zbl 0678.53062

[5] Burstall, F. E.; Rawnsley, J. H. Twistor theory for Riemannian symmetric spaces. With applications to harmonic maps of Riemann surfaces, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1424 (1990) | MR 1059054 | Zbl 0699.53059

[6] Calderbank, D. M. J. Selfdual Einstein metrics and conformal submersions, Edinburgh University (2000) (Preprint, http://people.bath.ac.uk/dmjc20/mpapers.html, math.DG/0001041)

[7] Eells, J.; Salamon, S. Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Tome 12 (1985), pp. 589-640 | Numdam | MR 848842 | Zbl 0627.58019

[8] Gauduchon, P.; Tod, K. P. Hyper-Hermitian metrics with symmetry, J. Geom. Phys., Tome 25 (1998), pp. 291-304 | Article | MR 1619847 | Zbl 0945.53042

[9] Hitchin, N. J. Complex manifolds and Einstein’s equations, Twistor geometry and nonlinear systems (Primorsko, 1980), Springer, Berlin (Lecture Notes in Math.) Tome 970 (1982), pp. 73-99 | MR 699802 | Zbl 0507.53025

[10] Lebrun, C. R. Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc., Tome 284 (1984), pp. 601-616 | Article | MR 743735 | Zbl 0513.53006

[11] Loubeau, E.; Pantilie, R. Harmonic morphisms between Weyl spaces and twistorial maps, Comm. Anal. Geom., Tome 14 (2006), pp. 847-881 | MR 2286268 | Zbl 1127.58010

[12] Ohnita, Y.; Udagawa, S. Stable harmonic maps from Riemann surfaces to compact Hermitian symmetric spaces, Tokyo J. Math., Tome 10 (1987), pp. 385-390 | Article | MR 926250 | Zbl 0646.58019

[13] Pantilie, R. Harmonic morphisms between Weyl spaces, Modern Trends in Geometry and Topology (2006), pp. 321-332 (Proceedings of the Seventh International Workshop on Differential Geometry and Its Applications, Deva, Romania, 5-11 September, 2005) | MR 2250223 | Zbl 1132.53033

[14] Pantilie, R. On a class of twistorial maps, Differential Geom. Appl., Tome 26 (2008), pp. 366-376 | Article | MR 2424018 | Zbl 1149.53028

[15] Pantilie, R.; Wood, J. C. A new construction of Einstein self-dual manifolds, Asian J. Math., Tome 6 (2002), pp. 337-348 | MR 1928633 | Zbl 1047.53022

[16] Pantilie, R.; Wood, J. C. Twistorial harmonic morphisms with one-dimensional fibres on self-dual four-manifolds, Q. J. Math, Tome 57 (2006), pp. 105-132 | Article | MR 2204263 | Zbl 1117.53047

[17] Rawnsley, J. H. f-structures, f-twistor spaces and harmonic maps, Geometry seminar “Luigi Bianchi” II — 1984, Springer, Berlin (Lecture Notes in Math.) Tome 1164 (1985), pp. 85-159 | MR 829229 | Zbl 0592.58009

[18] Rossi, H. LeBrun’s nonrealizability theorem in higher dimensions, Duke Math. J., Tome 52 (1985), pp. 457-474 | Article | MR 792182 | Zbl 0573.32018

[19] Siu, Y. T. The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2), Tome 112 (1980), pp. 73-111 | Article | MR 584075 | Zbl 0517.53058

[20] Wood, J. C. Harmonic morphisms between Riemannian manifolds, Modern Trends in Geometry and Topology (2006), pp. 397-414 (Proceedings of the Seventh International Workshop on Differential Geometry and Its Applications, Deva, Romania, 5-11 September, 2005) | MR 2250232 | Zbl 1135.53043

[21] Yano, K. On a structure defined by a tensor field f of type (1,1) satisfying f 3 +f=0, Tensor (N.S.), Tome 14 (1963), pp. 99-109 | MR 159296 | Zbl 0122.40705