Soit un germe d’un espace analytique réduit de dimension pure. Nous donnons une démonstration analytique du théorème de Briançon-Skoda pour l’anneau local . Ce résultat a déjà été démontré par Huneke en utilisant des méthodes algébriques. Nous obtenons également un résultat beaucoup plus fort pour les idéaux engendrés par peu d’éléments.
Let be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.
@article{AIF_2010__60_2_417_0, author = {Andersson, Mats and Samuelsson, H\aa kan and Sznajdman, Jacob}, title = {On the Brian\c con-Skoda theorem on a singular variety}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {417-432}, doi = {10.5802/aif.2527}, zbl = {1200.32007}, mrnumber = {2667781}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_2_417_0} }
Andersson, Mats; Samuelsson, Håkan; Sznajdman, Jacob. On the Briançon-Skoda theorem on a singular variety. Annales de l'Institut Fourier, Tome 60 (2010) pp. 417-432. doi : 10.5802/aif.2527. http://gdmltest.u-ga.fr/item/AIF_2010__60_2_417_0/
[1] Coleff-Herrera currents, duality, and Noetherian operators (Preprint Gothenburg (2009), available at arXiv:0902.3064)
[2] A residue criterion for strong holomorphicity (Ark. Mat., (to appear) available at arXiv:0711.2863)
[3] Integral representation with weights. I, Math. Ann., Tome 326 (2003) no. 1, pp. 1-18 | Article | MR 1981609 | Zbl 1024.32005
[4] Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Tome 128 (2004) no. 6, pp. 481-512 | Article | MR 2074610 | Zbl 1086.32005
[5] Explicit versions of the Briançon-Skoda theorem with variations, Michigan Math. J., Tome 54 (2006) no. 2, pp. 361-373 | Article | MR 2252765 | Zbl 1155.32004
[6] Integral representation with weights. II. Division and interpolation, Math. Z., Tome 254 (2006) no. 2, pp. 315-332 | Article | MR 2262705 | Zbl 1104.32002
[7] Explicit representation of membership of polynomial ideals (Preprint Mittag-Leffler (2008), available at arXiv:0806.2592)
[8] Koppelman formulas and the -equation on an analytic space (Preprint Mittag-Leffler (2008), available at arXiv:0801.0710)
[9] Decomposition of residue currents (J. reine angew. Math., (to appear), available at arXiv:0710.2016)
[10] Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. (4), Tome 40 (2007) no. 6, pp. 985-1007 | Numdam | MR 2419855 | Zbl 1143.32003
[11] Residue currents and Bezout identities, Birkhäuser Verlag, Basel, Progress in Mathematics, Tome 114 (1993) | MR 1249478 | Zbl 0802.32001
[12] Residues and -modules, The legacy of Niels Henrik Abel, Springer, Berlin (2004), pp. 605-651 | MR 2077588
[13] Les courants résiduels associés à une forme méromorphe, Springer, Berlin, Lecture Notes in Mathematics, Tome 633 (1978) | MR 492769 | Zbl 0371.32007
[14] Commutative algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 150 (1995) (With a view toward algebraic geometry) | MR 1322960 | Zbl 0819.13001
[15] Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths, Invent. Math., Tome 135 (1999) no. 2, pp. 297-328 | Article | MR 1666771 | Zbl 0932.32012
[16] Uniform bounds in Noetherian rings, Invent. Math., Tome 107 (1992) no. 1, pp. 203-223 | Article | MR 1135470 | Zbl 0756.13001
[17] A Briançon-Skoda theorem for isolated singularities, J. Algebra, Tome 204 (1998) no. 2, pp. 656-665 | Article | MR 1624420 | Zbl 0928.13006
[18] On Bochner-Martinelli residue currents and their annihilator ideals, Ann. Inst. Fourier (Grenoble), Tome 59 (2009) no. 6, pp. 2119-2142 | Article | Numdam
[19] Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse Math. (6), Tome 17 (2008) no. 4, pp. 781-859 | Article | Numdam | MR 2499856 | Zbl 1171.13005
[20] Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J., Tome 28 (1981) no. 2, pp. 199-222 | Article | MR 616270 | Zbl 0438.13019
[21] Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J., Tome 28 (1981) no. 1, pp. 97-116 | Article | MR 600418 | Zbl 0464.13005
[22] Residue currents of the Bochner-Martinelli type, Publ. Mat., Tome 44 (2000) no. 1, pp. 85-117 | MR 1775747 | Zbl 0964.32003
[23] Regularizations of products of residue and principal value currents, J. Funct. Anal., Tome 239 (2006) no. 2, pp. 566-593 | Article | MR 2261338 | Zbl 1111.32005
[24] Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., Tome 144 (1961), pp. 345-360 | Article | MR 148941 | Zbl 0112.38001
[25] Application des techniques à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4), Tome 5 (1972), pp. 545-579 | Numdam | MR 333246 | Zbl 0254.32017
[26] Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de , C. R. Acad. Sci. Paris Sér. A, Tome 278 (1974), pp. 949-951 | MR 340642 | Zbl 0307.32007
[27] An elementary proof of the Briançon-Skoda theorem (Preprint Gothenburg 2008, available at arXiv:0807.0142)
[28] Residue currents of monomial ideals, Indiana Univ. Math. J., Tome 56 (2007) no. 1, pp. 365-388 | Article | MR 2305939 | Zbl 1120.32004