Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2n-ary Graded and Homotopy Algebras
[Approche coalgébrique de la catégorie des algèbres de Loday infinies, différentielle souche pour les algèbres graduées 2n-aires ou à  homotopie]
Ammar, Mourad ; Poncin, Norbert
Annales de l'Institut Fourier, Tome 60 (2010), p. 355-387 / Harvested from Numdam

Nous définissons un coproduit gradué et coassociatif tordu sur l’algèbre tensorielle d’un espace vectoriel gradué V. Les codérivations (resp. codifférentielles quadratiques de “degré 1”, codifférentielles impaires quelconques) de cette co-algèbre sont en correspondance biunivoque avec les suites d’applications multilinéaires sur V (resp. structures graduées de Loday sur V, suites que nous appelons structures de Loday infinies sur V). Nous prouvons un théorème du modèle minimal pour les algèbres infinies de Loday et observons que la catégorie Lod contient la catégorie L comme sous-catégorie. En plus, le crochet de Lie gradué des codérivations conduit à un crochet de Lie gradué “souche” sur les espaces des cochaînes des algèbres de Loday graduées, de Loday infinies et de Loday graduées 2n-aires. Le crochet souche se restreint aux crochets gradués de Nijenhuis-Richardson et de Grabowski-Marmo, et il encode, au-delà  des cohomologies déjà  mentionnées, celles des algèbres de Lie graduées, de Poisson graduées, de Jacobi graduées, Lie infinies, ainsi que celle des algèbres de Lie graduées 2n-aires.

We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V. The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V, sequences that we call Loday infinity structures on V). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as a subcategory. Moreover, the graded Lie bracket of coderivations gives rise to a graded Lie “stem” bracket on the cochain spaces of graded Loday, Loday infinity, and 2n-ary graded Loday algebras. This stem bracket restricts to the graded Nijenhuis-Richardson and Grabowski-Marmo brackets, and it encodes, beyond the already mentioned cohomologies, those of graded Lie, graded Poisson, graded Jacobi, Lie infinity, as well as that of 2n-ary graded Lie algebras.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/aif.2525
Classification:  16W30,  16E45,  17B56,  17B70
Mots clés: co-algèbre de Zinbiel, suites graduées de Loday, Lie, Poisson, structure de Jacobi, algèbre fortement homotopique, cohomologie, Schouten-Nijenhuis, Nijenhuis-Richardson, crochets gradués de Grabowski-Marmo, théorie de déformation
@article{AIF_2010__60_1_355_0,
     author = {Ammar, Mourad and Poncin, Norbert},
     title = {Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras},
     journal = {Annales de l'Institut Fourier},
     volume = {60},
     year = {2010},
     pages = {355-387},
     doi = {10.5802/aif.2525},
     zbl = {1208.53084},
     mrnumber = {2664318},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2010__60_1_355_0}
}
Ammar, Mourad; Poncin, Norbert. Coalgebraic Approach to the Loday Infinity Category, Stem Differential for $2n$-ary Graded and Homotopy Algebras. Annales de l'Institut Fourier, Tome 60 (2010) pp. 355-387. doi : 10.5802/aif.2525. http://gdmltest.u-ga.fr/item/AIF_2010__60_1_355_0/

[1] Akman, Füsun On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra, Tome 120 (1997) no. 2, pp. 105-141 | Article | MR 1466615 | Zbl 0885.17020

[2] Ammar, Mourad Deformation Quantization and Cohomologies of Poisson, Graded, and Homotopy Algebras, University of Luxembourg, Paul Verlaine University of Metz (2008) (Ph. D. Thesis)

[3] Ammar, Mourad; Poncin, Norbert Formal Poisson cohomology of twisted r-matrix induced structures, Israel J. Math., Tome 165 (2008), pp. 381-411 | Article | MR 2403627 | Zbl 1146.53054

[4] Arnal, D.; Manchon, D.; Masmoudi, M. Choix des signes pour la formalité de M. Kontsevich, Pacific J. Math., Tome 203 (2002) no. 1, pp. 23-66 | Article | MR 1895924 | Zbl 1055.53066

[5] Balavoine, David Déformations et rigidité géométrique des algèbres de Leibniz, Comm. Algebra, Tome 24 (1996) no. 3, pp. 1017-1034 | Article | MR 1374652 | Zbl 0855.17021

[6] Balavoine, David Deformations of algebras over a quadratic operad, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 202 (1997), pp. 207-234 | MR 1436922 | Zbl 0883.17004

[7] Daletskii, Yuri L.; Takhtajan, Leon A. Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., Tome 39 (1997) no. 2, pp. 127-141 | Article | MR 1437747 | Zbl 0869.58024

[8] De Wilde, M.; Lecomte, P. Formal deformations of the Poisson Lie algebra of a symplectic manifold and star-products. Existence, equivalence, derivations, Deformation theory of algebras and structures and applications (Il Ciocco, 1986), Kluwer Acad. Publ., Dordrecht (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.) Tome 247 (1988), pp. 897-960 | MR 981635 | Zbl 0685.58039

[9] Fialowski, Alice; Penkava, Michael Deformation theory of infinity algebras, J. Algebra, Tome 255 (2002) no. 1, pp. 59-88 | Article | MR 1935035 | Zbl 1038.17012

[10] Filippov, V. T. n-LQ n ,p * ,ie algebras, Sibirsk. Mat. Zh., Tome 26 (1985) no. 6, p. 126-140, 191 | MR 816511 | Zbl 0585.17002

[11] Gerstenhaber, Murray On the deformation of rings and algebras, Ann. of Math. (2), Tome 79 (1964), pp. 59-103 | Article | MR 171807 | Zbl 0123.03101

[12] Ginzburg, Victor; Kapranov, Mikhail Koszul duality for operads, Duke Math. J., Tome 76 (1994) no. 1, pp. 203-272 | Article | MR 1301191 | Zbl 0855.18006

[13] Grabowski, Janusz; Marmo, Giuseppe Jacobi structures revisited, J. Phys. A, Tome 34 (2001) no. 49, pp. 10975-10990 | Article | MR 1872975 | Zbl 0998.53054

[14] Grabowski, Janusz; Marmo, Giuseppe The graded Jacobi algebras and (co)homology, J. Phys. A, Tome 36 (2003) no. 1, pp. 161-181 | Article | MR 1959019 | Zbl 1039.53090

[15] Ibáñez, R.; De León, M.; López, B.; Marrero, J. C.; Padrón, E. Duality and modular class of a Nambu-Poisson structure, J. Phys. A, Tome 34 (2001) no. 17, pp. 3623-3650 | Article | MR 1841496 | Zbl 1021.53060

[16] Kadeishvili, T. V. The algebraic structure in the homology of an A()-algebra, Soobshch. Akad. Nauk Gruzin. SSR, Tome 108 (1982) no. 2, p. 249-252 (1983) | MR 720689 | Zbl 0535.55005

[17] Kontsevich, Maxim Deformation quantization of Poisson manifolds, Lett. Math. Phys., Tome 66 (2003) no. 3, pp. 157-216 | Article | MR 2062626 | Zbl 1058.53065

[18] Kosmann-Schwarzbach, Yvette From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble), Tome 46 (1996) no. 5, pp. 1243-1274 | Article | Numdam | MR 1427124 | Zbl 0858.17027

[19] KrasilʼShchik, I. S. Supercanonical algebras and Schouten brackets, Mat. Zametki, Tome 49 (1991) no. 1, p. 70-76, 160 | MR 1101552 | Zbl 0723.58020

[20] Lecomte, P. A. B.; Michor, P. W.; Schicketanz, H. The multigraded Nijenhuis-Richardson algebra, its universal property and applications, J. Pure Appl. Algebra, Tome 77 (1992) no. 1, pp. 87-102 | Article | MR 1148273 | Zbl 0752.17019

[21] De León, Manuel; López, Belén; Marrero, Juan C.; Padrón, Edith Lichnerowicz-Jacobi cohomology and homology of Jacobi manifolds: modular class and duality (1999) (arXiv: math/9910079)

[22] De León, Manuel; López, Belén; Marrero, Juan C.; Padrón, Edith On the computation of the Lichnerowicz-Jacobi cohomology, J. Geom. Phys., Tome 44 (2003) no. 4, pp. 507-522 | Article | MR 1943175 | Zbl 1092.53060

[23] De León, Manuel; Marrero, Juan C.; Padrón, Edith Lichnerowicz-Jacobi cohomology, J. Phys. A, Tome 30 (1997) no. 17, pp. 6029-6055 | Article | MR 1482695 | Zbl 0951.37033

[24] Lichnerowicz, André Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, Tome 12 (1977) no. 2, pp. 253-300 | MR 501133 | Zbl 0405.53024

[25] Lichnerowicz, André Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9), Tome 57 (1978) no. 4, pp. 453-488 | MR 524629 | Zbl 0407.53025

[26] Loday, Jean-Louis Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2), Tome 39 (1993) no. 3-4, pp. 269-293 | MR 1252069 | Zbl 0806.55009

[27] Loday, Jean-Louis Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., Tome 77 (1995) no. 2, pp. 189-196 | MR 1379265 | Zbl 0859.17015

[28] Markl, Martin; Shnider, Steve; Stasheff, Jim Operads in algebra, topology and physics, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 96 (2002) | MR 1898414 | Zbl 1017.18001

[29] Masmoudi, Mohsen; Poncin, Norbert On a general approach to the formal cohomology of quadratic Poisson structures, J. Pure Appl. Algebra, Tome 208 (2007) no. 3, pp. 887-904 | Article | MR 2283433 | Zbl 1174.17018

[30] Michor, P. W.; Vinogradov, A. M. n-ary Lie and associative algebras, Rend. Sem. Mat. Univ. Politec. Torino, Tome 54 (1996) no. 4, pp. 373-392 (Geometrical structures for physical theories, II (Vietri, 1996)) | MR 1618134 | Zbl 0928.17029

[31] Nambu, Yoichiro Generalized Hamiltonian dynamics, Phys. Rev. D (3), Tome 7 (1973), pp. 2405-2412 | Article | MR 455611 | Zbl 1027.70503

[32] Nijenhuis, Albert; Richardson, R. W. Jr. Deformations of Lie algebra structures, J. Math. Mech., Tome 17 (1967), pp. 89-105 | MR 214636 | Zbl 0166.30202

[33] Oudom, Jean-Michel Coproduct and cogroups in the category of graded dual Leibniz algebras, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 202 (1997), pp. 115-135 | MR 1436919 | Zbl 0880.17002

[34] Penkava, M. Infinity Algebras, Cohomology and Cyclic Cohomology, and Infinitesimal Deformations (2001) (arXiv: math/0111088)

[35] Pichereau, Anne Poisson (co)homology and isolated singularities, J. Algebra, Tome 299 (2006) no. 2, pp. 747-777 | Article | MR 2228339 | Zbl 1113.17009

[36] Poncin, Norbert Premier et deuxième espaces de cohomologie de l’algèbre de Lie des opérateurs différentiels sur une variété, à coefficients dans les fonctions, Bull. Soc. Roy. Sci. Liège, Tome 67 (1998) no. 6, pp. 291-337 | MR 1677564 | Zbl 0971.17011

[37] Poncin, Norbert On the cohomology of the Nijenhuis-Richardson graded Lie algebra of the space of functions of a manifold, J. Algebra, Tome 243 (2001) no. 1, pp. 16-40 | Article | MR 1851652 | Zbl 1012.17014

[38] Rotkiewicz, Mikołaj Cohomology ring of n-Lie algebras, Extracta Math., Tome 20 (2005) no. 3, pp. 219-232 | MR 2243339 | Zbl 1163.17300

[39] Stasheff, Jim The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Appl. Algebra, Tome 89 (1993) no. 1-2, pp. 231-235 | Article | MR 1239562 | Zbl 0786.57017

[40] Vinogradov, Alexandre; Vinogradov, Michael On multiple generalizations of Lie algebras and Poisson manifolds, Secondary calculus and cohomological physics (Moscow, 1997), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 219 (1998), pp. 273-287 | MR 1640457 | MR 1640439 | Zbl 1074.17501

[41] Vinogradov, Alexandre; Vinogradov, Michael Graded multiple analogs of Lie algebras, Acta Appl. Math., Tome 72 (2002) no. 1-2, pp. 183-197 (Symmetries of differential equations and related topics) | Article | MR 1907945 | Zbl 1020.17003