On a general difference Galois theory I
[Théorie de Galois générale aux différences I]
Morikawa, Shuji
Annales de l'Institut Fourier, Tome 59 (2009), p. 2709-2732 / Harvested from Numdam

La théorie de Picard-Vessiot aux différences, la théorie de Galois des équations aux différences linéaires, est bien connue. Nous proposons une théorie de Galois des équations aux différences générales qui généralise la théorie de Picard-Vessiot. Pour toute extension de corps aux différences de caractéristique 0, nous attachons son groupe de Galois qui est un groupe de transformations de coordonnées.

We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic 0, we attach its Galois group, which is a group of coordinate transformation.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/aif.2505
Classification:  12Hxx,  37Fxx,  58Hxx,  14Hxx
Mots clés: théorie de Galois aux différences, Système dynamique, Système dynamique intégrable, Groupoïde de Galois
@article{AIF_2009__59_7_2709_0,
     author = {Morikawa, Shuji},
     title = {On a general difference Galois theory I},
     journal = {Annales de l'Institut Fourier},
     volume = {59},
     year = {2009},
     pages = {2709-2732},
     doi = {10.5802/aif.2505},
     zbl = {1194.12005},
     mrnumber = {2649331},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2009__59_7_2709_0}
}
Morikawa, Shuji. On a general difference Galois theory I. Annales de l'Institut Fourier, Tome 59 (2009) pp. 2709-2732. doi : 10.5802/aif.2505. http://gdmltest.u-ga.fr/item/AIF_2009__59_7_2709_0/

[1] Casale, G. Sur le groupoïde de Galois d’un feuilletage, Toulouse, Université Paul Sabatier (2004) (Ph. D. Thesis)

[2] Casale, G. Enveloppe galoisienne d’une application rationnelle de 1 , Publ. Mat., Tome 50 (2006) no. 1, pp. 191-202 | MR 2325017 | Zbl 1137.37022

[3] Franke, Charles H. Picard-Vessiot theory of linear homogeneous difference equations, Trans. Amer. Math. Soc., Tome 108 (1963), pp. 491-515 | Article | MR 155819 | Zbl 0116.02604

[4] Granier, A. Un D -groupoïde de Galois pour les équations au q -différences, Toulouse, Université Paul Sabatier (2009) (Ph. D. Thesis)

[5] Hardouin, Charlotte; Singer, Michael F. Differential Galois theory of linear difference equations, Math. Ann., Tome 342 (2008) no. 2, pp. 333-377 | Article | MR 2425146 | Zbl 1163.12002

[6] Heiderlich, F. Infinitesimal Galois theory for D -module fields (in preparation)

[7] Malgrange, B. Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2, Enseignement Math., Geneva (Monogr. Enseign. Math.) Tome 38 (2001), pp. 465-501 | MR 1929336 | Zbl 1033.32020

[8] Morikawa, S.; Umemura, H On a general Galois theory of difference equations II, Ann. Inst. Fourier, Tome 59 (2009) no. 7, pp. 2733-2771 | Article | Numdam

[9] Van Der Put, Marius; Singer, Michael F. Galois theory of difference equations, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1666 (1997) | MR 1480919 | Zbl 0930.12006

[10] Umemura, Hiroshi Differential Galois theory of infinite dimension, Nagoya Math. J., Tome 144 (1996), pp. 59-135 http://projecteuclid.org/getRecord?id=euclid.nmj/1118771876 | MR 1425592 | Zbl 0878.12002

[11] Umemura, Hiroshi Galois theory of algebraic and differential equations, Nagoya Math. J., Tome 144 (1996), pp. 1-58 http://projecteuclid.org/getRecord?id=euclid.nmj/1118771875 | MR 1425591 | Zbl 0885.12004

[12] Umemura, Hiroshi Galois theory and Painlevé equations, Théories asymptotiques et équations de Painlevé, Soc. Math. France, Paris (Sémin. Congr.) Tome 14 (2006), pp. 299-339 | MR 2353471 | Zbl 1156.34080

[13] Umemura, Hiroshi Invitation to Galois theory, Differential equations and quantum groups, Eur. Math. Soc., Zürich (IRMA Lect. Math. Theor. Phys.) Tome 9 (2007), pp. 269-289 | MR 2322334