Soit un germe d’ensemble en tel que . On dit que est une direction de en s’il existe une suite de points qui converge vers telle que quand . L’ensemble des directions de en est noté . Soient deux germes en d’ensemble sous-analytique tels que .
On étudie le problème suivant : la dimension de l’intersection, , est-elle invariante par homéomorphisme bi-Lipschitzien ? On montre que la réponse est non en général, néanmoins la propriété est vraie, lorsque les images de et sont sous-analytiques. En particulier, les ensembles des directions de deux germes sous-analytiques, équivalents par homéomorphisme bi-Lipschitzien, ont la même dimension.
Let be a set-germ at such that . We say that is a direction of at if there is a sequence of points tending to such that as . Let denote the set of all directions of at .
Let be subanalytic set-germs at such that . We study the problem of whether the dimension of the common direction set, is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of and are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.
@article{AIF_2009__59_6_2445_0, author = {Koike, Satoshi and Paunescu, Laurentiu}, title = {The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {2445-2467}, doi = {10.5802/aif.2496}, zbl = {1184.14086}, mrnumber = {2640926}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_6_2445_0} }
Koike, Satoshi; Paunescu, Laurentiu. The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms. Annales de l'Institut Fourier, Tome 59 (2009) pp. 2445-2467. doi : 10.5802/aif.2496. http://gdmltest.u-ga.fr/item/AIF_2009__59_6_2445_0/
[1] Arc-analytic functions, Invent. math., Tome 101 (1990), pp. 411-424 | Article | MR 1062969 | Zbl 0723.32005
[2] Sur les exposants de Lojasiewicz, Comment. Math. Helv., Tome 50 (1975), pp. 493-507 | Article | MR 404674 | Zbl 0321.32006
[3] La trivialité topologique n’implique pas les conditions de Whitney, C. R. Acad. Sci. Paris, Tome 280 (1975), pp. 365-367 | MR 425165 | Zbl 0331.32010
[4] The modified analytic trivialization via the weighted blowing up, J. Math. Soc. Japan, Tome 44 (1992), pp. 455-459 | Article | MR 1167377 | Zbl 0766.58008
[5] Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities, Longman (Pitman Research Notes in Mathematics Series) Tome 381 (1998), pp. 8-29 | MR 1607662 | Zbl 0954.26012
[6] Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan, Tome 52 (2000), pp. 433-446 | Article | MR 1742795 | Zbl 0964.32023
[7] Arc Spaces and additive invariants in real algebraic and analytic geometry, Société Mathématique de France, Panoramas et Synthèses (2008) no. 24 | MR 2404096 | Zbl 1155.14313
[8] Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Compositio Math., Tome 136 (2003), pp. 217-235 | Article | MR 1967391 | Zbl 1026.32055
[9] Invariants of bi-Lipschitz equivalence of real analytic functions, Banach Center Publications, Tome 65 (2004), pp. 67-75 | Article | MR 2104338 | Zbl 1059.32006
[10] Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo (1973), pp. 453-493 | MR 377101 | Zbl 0297.32008
[11] Stratification and flatness, Real and Complex Singularities, Sithoff and Noordhoff (1977), pp. 196-265 | MR 499286 | Zbl 0424.32004
[12] On strong -equivalence of real analytic functions, J. Math. Soc. Japan, Tome 45 (1993), pp. 313-320 | Article | MR 1206656 | Zbl 0788.32024
[13] The Briançon-Speder and Oka families are not biLipschitz trivial, Several Topics in Singularity Theory, RIMS Kokyuroku, Tome 1328 (2003), pp. 165-173 | Zbl 1064.58031
[14] A complete determination of -sufficiency in , Invent. math., Tome 8 (1969), pp. 226-235 | Article | MR 254860 | Zbl 0183.04602
[15] Characterizations of -sufficiency of jets, Topology, Tome 11 (1972), pp. 115-131 | Article | MR 288775 | Zbl 0234.58005
[16] Une classification des singularités réels, C.R. Acad. Sci. Paris, Tome 288 (1979), pp. 809-812 | MR 535641 | Zbl 0404.58013
[17] The modified analytic trivialization of singularities, J. Math. Soc. Japan , Tome 32 (1980), pp. 605-614 | Article | MR 589100 | Zbl 0509.58007
[18] On classification of real singularities, Invent. math., Tome 82 (1985), pp. 257-262 | Article | MR 809714 | Zbl 0587.32018
[19] Ensembles semi-algébriques symétriques par arcs, Math. Ann., Tome 282 (1988), pp. 445-462 | Article | MR 967023 | Zbl 0686.14027
[20] Ensembles semi-analytiques, Inst. Hautes Etudes Sci. Lectute Note (1967)
[21] Lipschitz equisingularity, Dissertationes Math. Tome 243 (1985) | MR 808226 | Zbl 0578.32020
[22] A criterion for Lipschitz equisingularity, Bull. Acad. Polon. Sci., Tome 37 (1988), pp. 109-116 | MR 1101458 | Zbl 0761.32018
[23] Lipschitz equisingularity problems, Several Topics in Singularity Theory, RIMS Kokyuroku, Tome 1328 (2003), pp. 73-113 | Zbl 1064.58032
[24] On the weak simultaneous resolution of a negligible truncation of the Newton boundary, Contemporary Math., Tome 90 (1989), pp. 199-210 | MR 1000603 | Zbl 0682.32011
[25] Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier, Tome 38 (1988), pp. 189-213 | Article | Numdam | MR 978246 | Zbl 0631.32006
[26] Lipschitz stratification of real analytic sets, Singularities, Banach Center Publications, Tome 20 (1988), pp. 323-333 | MR 1101849 | Zbl 0666.32011
[27] Lipschitz stratification of subanalytic sets, Ann. Sci. Ec. Norm. Sup., Tome 27 (1994), pp. 661-696 | Numdam | MR 1307677 | Zbl 0819.32007
[28] An example of blow-analytic homeomorphism, Real Analytic and Algebraic Singularities, Longman (Pitman Research Notes in Mathematics Series) Tome 381 (1998), p. 62-63 | MR 1607678 | Zbl 0896.58012