The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms
[La dimension directionnelle des ensembles sous-analytiques est invariante par les homéomorphismes bi-Lipschitz]
Koike, Satoshi ; Paunescu, Laurentiu
Annales de l'Institut Fourier, Tome 59 (2009), p. 2445-2467 / Harvested from Numdam

Soit A n un germe d’ensemble en 0 n tel que 0A ¯. On dit que rS n-1 est une direction de A en 0 n s’il existe une suite de points {x i }A{0} qui converge vers 0 n telle que x i x i r quand i. L’ensemble des directions de A en 0 n est noté D(A). Soient A,B n deux germes en 0 n d’ensemble sous-analytique tels que 0A ¯B ¯.

On étudie le problème suivant : la dimension de l’intersection, dim(D(A)D(B)), est-elle invariante par homéomorphisme bi-Lipschitzien ? On montre que la réponse est non en général, néanmoins la propriété est vraie, lorsque les images de A et B sont sous-analytiques. En particulier, les ensembles des directions de deux germes sous-analytiques, équivalents par homéomorphisme bi-Lipschitzien, ont la même dimension.

Let A n be a set-germ at 0 n such that 0A ¯. We say that rS n-1 is a direction of A at 0 n if there is a sequence of points {x i }A{0} tending to 0 n such that x i x i r as i. Let D(A) denote the set of all directions of A at 0 n .

Let A,B n be subanalytic set-germs at 0 n such that 0A ¯B ¯. We study the problem of whether the dimension of the common direction set, dim(D(A)D(B)) is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of A and B are also subanalytic. In particular if two subanalytic set-germs are bi-Lipschitz equivalent their direction sets must have the same dimension.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/aif.2496
Classification:  14P15,  32B20,  57R45
Mots clés: ensemble sous-analytique, dimension de l’intersection, homéomorphisme bi-Lipschitzien
@article{AIF_2009__59_6_2445_0,
     author = {Koike, Satoshi and Paunescu, Laurentiu},
     title = {The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms},
     journal = {Annales de l'Institut Fourier},
     volume = {59},
     year = {2009},
     pages = {2445-2467},
     doi = {10.5802/aif.2496},
     zbl = {1184.14086},
     mrnumber = {2640926},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2009__59_6_2445_0}
}
Koike, Satoshi; Paunescu, Laurentiu. The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms. Annales de l'Institut Fourier, Tome 59 (2009) pp. 2445-2467. doi : 10.5802/aif.2496. http://gdmltest.u-ga.fr/item/AIF_2009__59_6_2445_0/

[1] Bierstone, E.; Milman, P. D. Arc-analytic functions, Invent. math., Tome 101 (1990), pp. 411-424 | Article | MR 1062969 | Zbl 0723.32005

[2] Bochnak, J.; Risler, J.-J. Sur les exposants de Lojasiewicz, Comment. Math. Helv., Tome 50 (1975), pp. 493-507 | Article | MR 404674 | Zbl 0321.32006

[3] Briançon, J.; Speder, J. P. La trivialité topologique n’implique pas les conditions de Whitney, C. R. Acad. Sci. Paris, Tome 280 (1975), pp. 365-367 | MR 425165 | Zbl 0331.32010

[4] Fukui, T. The modified analytic trivialization via the weighted blowing up, J. Math. Soc. Japan, Tome 44 (1992), pp. 455-459 | Article | MR 1167377 | Zbl 0766.58008

[5] Fukui, T.; Koike, S.; Kuo, T.-C.; T. Fukuda, T. Fukui, S. Izumiya And S. Koike Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities, Longman (Pitman Research Notes in Mathematics Series) Tome 381 (1998), pp. 8-29 | MR 1607662 | Zbl 0954.26012

[6] Fukui, T.; Paunescu, L. Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan, Tome 52 (2000), pp. 433-446 | Article | MR 1742795 | Zbl 0964.32023

[7] Fukui, T.; Paunescu, L.; Coste, M.; Kurdyka, K.; Mccrory, C.; Parusinski, A. Arc Spaces and additive invariants in real algebraic and analytic geometry, Société Mathématique de France, Panoramas et Synthèses (2008) no. 24 | MR 2404096 | Zbl 1155.14313

[8] Henry, J.-P.; Parusiński, A. Existence of Moduli for bi-Lipschitz equivalence of analytic functions, Compositio Math., Tome 136 (2003), pp. 217-235 | Article | MR 1967391 | Zbl 1026.32055

[9] Henry, J.-P.; Parusiński, A. Invariants of bi-Lipschitz equivalence of real analytic functions, Banach Center Publications, Tome 65 (2004), pp. 67-75 | Article | MR 2104338 | Zbl 1059.32006

[10] Hironaka, H. Subanalytic sets, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo (1973), pp. 453-493 | MR 377101 | Zbl 0297.32008

[11] Hironaka, H.; Oslo 1976, P. Holm Stratification and flatness, Real and Complex Singularities, Sithoff and Noordhoff (1977), pp. 196-265 | MR 499286 | Zbl 0424.32004

[12] Koike, S. On strong C 0 -equivalence of real analytic functions, J. Math. Soc. Japan, Tome 45 (1993), pp. 313-320 | Article | MR 1206656 | Zbl 0788.32024

[13] Koike, S. The Briançon-Speder and Oka families are not biLipschitz trivial, Several Topics in Singularity Theory, RIMS Kokyuroku, Tome 1328 (2003), pp. 165-173 | Zbl 1064.58031

[14] Kuo, T.-C. A complete determination of C 0 -sufficiency in J r (2,1), Invent. math., Tome 8 (1969), pp. 226-235 | Article | MR 254860 | Zbl 0183.04602

[15] Kuo, T.-C. Characterizations of v-sufficiency of jets, Topology, Tome 11 (1972), pp. 115-131 | Article | MR 288775 | Zbl 0234.58005

[16] Kuo, T.-C. Une classification des singularités réels, C.R. Acad. Sci. Paris, Tome 288 (1979), pp. 809-812 | MR 535641 | Zbl 0404.58013

[17] Kuo, T.-C. The modified analytic trivialization of singularities, J. Math. Soc. Japan , Tome 32 (1980), pp. 605-614 | Article | MR 589100 | Zbl 0509.58007

[18] Kuo, T.-C. On classification of real singularities, Invent. math., Tome 82 (1985), pp. 257-262 | Article | MR 809714 | Zbl 0587.32018

[19] Kurdyka, K. Ensembles semi-algébriques symétriques par arcs, Math. Ann., Tome 282 (1988), pp. 445-462 | Article | MR 967023 | Zbl 0686.14027

[20] Lojasiewicz, S. Ensembles semi-analytiques, Inst. Hautes Etudes Sci. Lectute Note (1967)

[21] Mostowski, T. Lipschitz equisingularity, Dissertationes Math. Tome 243 (1985) | MR 808226 | Zbl 0578.32020

[22] Mostowski, T. A criterion for Lipschitz equisingularity, Bull. Acad. Polon. Sci., Tome 37 (1988), pp. 109-116 | MR 1101458 | Zbl 0761.32018

[23] Mostowski, T. Lipschitz equisingularity problems, Several Topics in Singularity Theory, RIMS Kokyuroku, Tome 1328 (2003), pp. 73-113 | Zbl 1064.58032

[24] Oka, M. On the weak simultaneous resolution of a negligible truncation of the Newton boundary, Contemporary Math., Tome 90 (1989), pp. 199-210 | MR 1000603 | Zbl 0682.32011

[25] Parusiński, A. Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier, Tome 38 (1988), pp. 189-213 | Article | Numdam | MR 978246 | Zbl 0631.32006

[26] Parusiński, A. Lipschitz stratification of real analytic sets, Singularities, Banach Center Publications, Tome 20 (1988), pp. 323-333 | MR 1101849 | Zbl 0666.32011

[27] Parusiński, A. Lipschitz stratification of subanalytic sets, Ann. Sci. Ec. Norm. Sup., Tome 27 (1994), pp. 661-696 | Numdam | MR 1307677 | Zbl 0819.32007

[28] Paunescu, L.; T. Fukuda, T. Fukui, S. Izumiya And S. Koike An example of blow-analytic homeomorphism, Real Analytic and Algebraic Singularities, Longman (Pitman Research Notes in Mathematics Series) Tome 381 (1998), p. 62-63 | MR 1607678 | Zbl 0896.58012