Soit un groupe algébrique réductif connexe, sur un corps algébriquement clos de caractéristique zéro ou bonne et impaire. Nous caractérisons les classes de conjugaison sphériques de comme celles ayant une intersection seulement avec des cellules de Bruhat de correspondantes à des involutions dans le groupe de Weyl de .
Let be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in as those intersecting only Bruhat cells in corresponding to involutions in the Weyl group of .
@article{AIF_2009__59_6_2329_0, author = {Carnovale, Giovanna}, title = {Spherical conjugacy classes and the Bruhat decomposition}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {2329-2357}, doi = {10.5802/aif.2492}, zbl = {1195.20051}, mrnumber = {2640922}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_6_2329_0} }
Carnovale, Giovanna. Spherical conjugacy classes and the Bruhat decomposition. Annales de l'Institut Fourier, Tome 59 (2009) pp. 2329-2357. doi : 10.5802/aif.2492. http://gdmltest.u-ga.fr/item/AIF_2009__59_6_2329_0/
[1] Linear Algebraic Groups, W.A. Benjamin, Inc. (1969) | MR 251042 | Zbl 0186.33201
[2] Éléments de Mathématique. Groupes et Algèbres de Lie, Chapitres 4,5, et 6, Masson, Paris (1981) | MR 647314
[3] Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., Tome 55 (1986), pp. 191-198 | Article | MR 833243 | Zbl 0604.14048
[4] Classification des espaces homogènes sphériques, Compositio Math., Tome 63 (1987), pp. 189-208 | Numdam | MR 906369 | Zbl 0642.14011
[5] Spherical orbits and representations of , Transformation Groups, Tome 10 (2005) no. 1, pp. 29-62 | Article | MR 2127340 | Zbl 1101.17006
[6] Spherical conjugacy classes and involutions in the Weyl group, Math. Z., Tome 260 (2008) no. 1, pp. 1-23 | Article | MR 2413339 | Zbl 1145.14040
[7] Simple Groups of Lie Type, Pure and Applied Mathematics XXVIII (1972) | MR 407163 | Zbl 0248.20015
[8] Finite Groups of Lie Type, Pure and Applied Mathematics (1985) | MR 794307 | Zbl 0567.20023
[9] Quantum coadjoint action, J. Amer. Math. Soc., Tome 5 (1992), pp. 151-190 | Article | MR 1124981 | Zbl 0747.17018
[10] Some Quantum Analogues of Solvable Lie Groups, Geometry and Analysis, Tata Institute of Fundamental Research,(Bombay1992) (1995), pp. 41-65 | MR 1351503 | Zbl 0878.17014
[11] Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math., Tome 214 (2004) no. 2, pp. 245-261 | Article | MR 2042932 | Zbl 1062.20050
[12] Intersection of conjugacy classes with Bruhat cells in Chevalley groups: the cases , , J. Pure Appl. Algebra, Tome 209 (2007) no. 3, pp. 703-723 | Article | MR 2298850 | Zbl 1128.20034
[13] Double Bruhat cells and total positivity, J. Amer. Math. Soc., Tome 12 (1999) no. 2, pp. 335-380 | Article | MR 1652878 | Zbl 0913.22011
[14] Spherical nilpotent orbits in positive characteristic, Pacific J. Math., Tome 237 (2008), p. 241-186 | Article | MR 2421122 | Zbl pre05366370
[15] Contractions of the actions of reductive algebraic groups in arbitrary characteristic, Invent. Math., Tome 107 (1992), pp. 127-133 | Article | MR 1135467 | Zbl 0778.20018
[16] Conjugacy Classes in Semisimple Algebraic Groups, AMS, Providence, Rhode Island (1995) | MR 1343976 | Zbl 0834.20048
[17] On the set of orbits for a Borel subgroup, Comment. Math. Helvetici, Tome 70 (1995), pp. 285-309 | Article | MR 1324631 | Zbl 0828.22016
[18] Complexity and nilpotent orbits, Manuscripta Math., Tome 83 (1994), pp. 223-237 | Article | MR 1277527 | Zbl 0822.14024
[19] On spherical nilpotent orbits and beyond, Ann. Inst. Fourier, Grenoble, Tome 49 (1999) no. 5, pp. 1453-1476 | Article | Numdam | MR 1723823 | Zbl 0944.17013
[20] The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford University Press (1969), pp. 373-391 | MR 263830 | Zbl 0195.50803
[21] Some results on algebraic groups with involutions, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., North-Holland, Amsterdam, Tome 6 (1985), pp. 525-543 | MR 803346 | Zbl 0628.20036
[22] Linear Algebraic Groups, Second Edition, Progress in Mathematics Birkhäuser Tome 9 (1998) | MR 1642713 | Zbl 0927.20024
[23] Conjugacy classes, Seminar on algebraic groups and related finite groups, Springer-Verlag, Berlin Heidelberg New York (LNM) Tome 131 (1970), pp. 167-266 | MR 268192 | Zbl 0249.20024
[24] Regular elements of semisimple algebraic groups, I.H.E.S. Publ. Math., Tome 25 (1965), pp. 49-80 | Numdam | MR 180554 | Zbl 0136.30002
[25] Complexity of action of reductive groups, Func. Anal. Appl., Tome 20 (1986), pp. 1-11 | Article | MR 831043 | Zbl 0601.14038
[26] Cluster algebras of finite type via Coxeter elements and principal minors, Transformation Groups, Tome 13 (2008) no. 3–4, pp. 855-895 | Article | MR 2452619 | Zbl pre05565873