Soit un corps de fonctions d’une variable sur un corps de caractéristique nulle. Soit un anneau d’holomorphie de , distinct de . Si est récursif, nous démontrons que le dixième problème de Hilbert sur est indécidable. En général, il existe dans tels qu’il n’y ait pas d’algorithme décidant si une équation polynomiale à coefficients dans a une solution dans .
Let be a one-variable function field over a field of constants of characteristic 0. Let be a holomorphy subring of , not equal to . We prove the following undecidability results for : if is recursive, then Hilbert’s Tenth Problem is undecidable in . In general, there exist such that there is no algorithm to tell whether a polynomial equation with coefficients in has solutions in .
@article{AIF_2009__59_5_2103_0, author = {Moret-Bailly, Laurent and Shlapentokh, Alexandra}, title = {Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic~0}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {2103-2118}, doi = {10.5802/aif.2484}, zbl = {pre05641409}, mrnumber = {2573198}, zbl = {1226.11131}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_5_2103_0} }
Moret-Bailly, Laurent; Shlapentokh, Alexandra. Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0. Annales de l'Institut Fourier, Tome 59 (2009) pp. 2103-2118. doi : 10.5802/aif.2484. http://gdmltest.u-ga.fr/item/AIF_2009__59_5_2103_0/
[1] Double fibres and double covers: Paucity of rational points, Acta Arithmetica, Tome 79 (1997), pp. 113-135 | MR 1438597 | Zbl 0863.14011
[2] Division-ample sets and diophantine problem for rings of integers, Journal de Théorie des Nombres Bordeaux, Tome 17 (2005), pp. 727-735 | Article | Numdam | MR 2212121 | Zbl 1161.11323
[3] Topology of diophantine sets: Remarks on Mazur’s conjectures, In Jan Denef, Leonard Lipshitz, Thanases Pheidas, and Jan Van Geel, editors Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry, volume 270 of Contemporary Mathematics, American Mathematical Society (2000), pp. 253-260 | MR 1802007 | Zbl 0982.14014
[4] Hilbert’s tenth problem is unsolvable, American Mathematical Monthly, Tome 80 (1973), pp. 233-269 | Article | MR 317916 | Zbl 0277.02008
[5] Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution, Proc. Sympos. Pure Math., Tome 28 (1976), pp. 323- 378 (Amer. Math. Soc.) | MR 432534 | Zbl 0346.02026
[6] Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc., Tome 48 (1975), pp. 214-220 | MR 360513 | Zbl 0324.02032
[7] The diophantine problem for polynomial rings and fields of rational functions, Transactions of American Mathematical Society, Tome 242 (1978), pp. 391-399 | Article | MR 491583 | Zbl 0399.10048
[8] The diophantine problem for polynomial rings of positive characteristic, In M. Boffa, D. van Dalen, and K. MacAloon, editors, North Holland, Logic Colloquium 78 (1979), pp. 131-145 | MR 567668 | Zbl 0457.12011
[9] Diophantine sets of algebraic integers, II, Transactions of American Mathematical Society, Tome 257 (1980) no. 1, pp. 227-236 | Article | MR 549163 | Zbl 0426.12009
[10] Diophantine sets over some rings of algebraic integers, Journal of London Mathematical Society, Tome 18 (1978) no. 2, pp. 385-391 | Article | MR 518221 | Zbl 0399.10049
[11] Hilbert’s tenth problem: relations with arithmetic and algebraic geometry, American Mathematical Society, Providence, RI, Contemporary Mathematics, Tome 270 (2000) (Papers from the workshop held at Ghent University, Ghent, November 2-5, 1999 ) | MR 1802007 | Zbl 0955.00034
[12] Hilbert’s tenth problem for algebraic function fields of characteristic 2, Pacific J. Math., Tome 210 (2003) no. 2, pp. 261-281 | Article | Zbl 1057.11067
[13] Hilbert’s tenth problem for function fields of varieties over , Int. Math. Res. Not. (2004) no. 59, pp. 3191-3205 | Article | MR 2097039 | Zbl 1109.11061
[14] Hilbert’s Tenth Problem for function fields of varieties over number fields and p-adic fields, Journal of Algebra, Tome 310 (2007), pp. 775-792 | Article | MR 2308179 | Zbl 1152.11050
[15] Field arithmetic, Springer Verlag, Berlin, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 11 (2005) | MR 2102046 | Zbl 1055.12003
[16] Diophantine undecidability of , Journal of Algebra, Tome 150 (1992) no. 1, pp. 35-44 | Article | MR 1174886 | Zbl 0754.11039
[17] Diophantine unsolvability over p-adic function fields, Journal of Algebra, Tome 176 (1995), pp. 83-110 | Article | MR 1345295 | Zbl 0858.12006
[18] Defining transcendentals in function fields, J. Symbolic Logic, Tome 67 (2002) no. 3, pp. 947-956 | Article | MR 1925951 | Zbl 1015.03041
[19] Algebraic Number Theory, Addison Wesley, Reading, MA (1970) | MR 282947 | Zbl 0211.38404
[20] Hilbert’s Tenth Problem, The MIT Press, Cambridge, Massachusetts (1993) | MR 1244324 | Zbl 0790.03008
[21] The topology of rational points, Experimental Mathematics, Tome 1 (1992) no. 1, pp. 35-45 | MR 1181085 | Zbl 0784.14012
[22] Questions of decidability and undecidability in number theory, Journal of Symbolic Logic, Tome 59 (1994) no. 2, pp. 353-371 | Article | MR 1276620 | Zbl 0814.11059
[23] Speculation about the topology of rational points: An up-date, Asterisque, Tome 228 (1995), pp. 165-181 | MR 1330932 | Zbl 0851.14009
[24] Open problems regarding rational points on curves and varieties, Cambridge University Press, Galois Representations in Arithmetic Algebraic Geometry (1998) | MR 1696485 | Zbl 0943.14009
[25] Elliptic curves and Hilbert’s Tenth Problem for algebraic function fields over real and -adic fields, Journal für die reine und angewandte Mathematik, Tome 587 (2006), pp. 77-143 | MR 2186976 | Zbl 1085.14029
[26] Hilbert’s tenth problem for a class of rings of algebraic integers, Proceedings of American Mathematical Society, Tome 104 (1988) no. 2, pp. 611-620 | MR 962837 | Zbl 0697.12020
[27] Hilbert’s tenth problem for fields of rational functions over finite fields, Inventiones Mathematicae, Tome 103 (1991), pp. 1-8 | Article | MR 1079837 | Zbl 0696.12022
[28] Endomorphisms of elliptic curves and undecidability in function fields of positive characteristic, J. Algebra, Tome 273 (2004) no. 1, pp. 395-411 | Article | MR 2032468 | Zbl 1035.11064
[29] Hilbert’s Tenth Problem and Mazur’s conjecture for large subrings of , Journal of AMS, Tome 16 (2003) no. 4, pp. 981-990 | MR 1992832 | Zbl 1028.11077
[30] Diophantine definability of infinite discrete non-archimedean sets and diophantine models for large subrings of number fields, Journal für die Reine und Angewandte Mathematik (2005), pp. 27-48 | Article | MR 2196727 | Zbl 1139.11056
[31] Elementary equivalence versus isomorphism, Invent. Math., Tome 150 (2002) no. 2, pp. 385-408 | Article | MR 1933588 | Zbl 1162.12302
[32] Diophantine relations between algebraic number fields, Communications on Pure and Applied Mathematics, Tome XLII (1989), pp. 1113-1122 | Article | MR 1029120 | Zbl 0698.12022
[33] Extension of Hilbert’s tenth problem to some algebraic number fields, Communications on Pure and Applied Mathematics, Tome XLII (1989), pp. 939-962 | Article | MR 1008797 | Zbl 0695.12020
[34] Hilbert’s tenth problem for rings of algebraic functions of characteristic , J. Number Theory, Tome 40 (1992) no. 2, pp. 218-236 | Article | MR 1149739 | Zbl 0746.03008
[35] Diophantine classes of holomorphy rings of global fields, Journal of Algebra, Tome 169 (1994) no. 1, pp. 39-175 | Article | MR 1296586 | Zbl 0810.11073
[36] Diophantine undecidability for some holomorphy rings of algebraic functions of characteristic 0, Communications in Algebra, Tome 22 (1994) no. 11, pp. 4379-4404 | Article | MR 1284336 | Zbl 0810.11074
[37] Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of , Annals of Pure and Applied Logic, Tome 68 (1994), pp. 299-325 | Article | MR 1289287 | Zbl 0816.11066
[38] Diophantine undecidability of algebraic function fields over finite fields of constants, Journal of Number Theory, Tome 58 (1996) no. 2, pp. 317-342 | Article | MR 1393619 | Zbl 0856.11058
[39] Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator, Inventiones Mathematicae, Tome 129 (1997), pp. 489-507 | Article | MR 1465332 | Zbl 0887.11053
[40] Diophantine undecidability of function fields of characteristic greater than 2 finitely generated over a field algebraic over a finite field, Compositio Mathematica, Tome 132 (2002) no. 1, pp. 99-120 | Article | MR 1914257 | Zbl 1011.03026
[41] On diophantine decidability and definability in some rings of algebraic functions of characteristic 0, Journal of Symbolic Logic, Tome 67 (2002) no. 2, pp. 759-786 | Article | MR 1905166 | Zbl 1011.03027
[42] On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2, Journal of Number Theory, Tome 95 (2002), pp. 227-252 | MR 1924099 | Zbl 1082.11079
[43] A ring version of Mazur’s conjecture on topology of rational points, International Mathematics Research Notices, Tome 7 (2003), pp. 411-423 | Article | MR 1939572 | Zbl 1107.11049
[44] On diophantine definability and decidability in some infinite totally real extensions of , Transactions of AMS, Tome 356 (2004) no. 8, pp. 3189-3207 | Article | MR 2052946 | Zbl 1052.11082
[45] First-order definitions of rational functions and -integers over holomorphy rings of algebraic functions of characteristic 0, Ann. Pure Appl. Logic, Tome 136 (2005) no. 3, pp. 267-283 | Article | MR 2169686 | Zbl 1079.03025
[46] Hilbert’s Tenth Problem: Diophantine Classes and Extensions to Global Fields, Cambridge University Press (2006) | MR 2297245 | Zbl pre05129217
[47] Diophantine undecidability for some function fields of infinite transcendence degree and positive characteristic, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Tome 304 (2003) no. Teor. Slozhn. Vychisl. 8, p. 141-167, 171 | MR 2054753 | Zbl 1140.11356
[48] Hilbert’s tenth problem for rational function fields in characteristic 2, Proceedings of the American Mathematical Society, Tome 120 (1994) no. 1, pp. 249-253 | MR 1159179 | Zbl 0795.03015
[49] The existential theory of real hyperelliptic fields, Journal of Algebra, Tome 233 (2000) no. 1, pp. 65-86 | MR 1793590 | Zbl 0985.11062
[50] Hilbert’s tenth problem for rings of rational functions, Notre Dame Journal of Formal Logic, Tome 43 (2003), pp. 181-192 | Article | MR 2034745 | Zbl 1062.03019