Nous démontrons qu’il existe un entier strictement positif , petit mais fixé, tel que pour tout nombre premier plus grand qu’un entier fixé, tout sous-ensemble des entiers modulo qui vérifie et est contenu dans une progression arithmétique de longueur . Il s’agit du premier résultat de cette nature qui ne contraint pas inutilement le cardinal de .
We prove that there is a small but fixed positive integer such that for every prime larger than a fixed integer, every subset of the integers modulo which satisfies and is contained in an arithmetic progression of length . This is the first result of this nature which places no unnecessary restrictions on the size of .
@article{AIF_2009__59_5_2043_0, author = {Serra, Oriol and Z\'emor, Gilles}, title = {Large sets with small doubling modulo $p$ are well covered by an arithmetic progression}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {2043-2060}, doi = {10.5802/aif.2482}, zbl = {pre05641407}, mrnumber = {2573196}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_5_2043_0} }
Serra, Oriol; Zémor, Gilles. Large sets with small doubling modulo $p$ are well covered by an arithmetic progression. Annales de l'Institut Fourier, Tome 59 (2009) pp. 2043-2060. doi : 10.5802/aif.2482. http://gdmltest.u-ga.fr/item/AIF_2009__59_5_2043_0/
[1] Rectification principles in additive number theory, Discrete Comput. Geom., Tome 19 (1998) no. 3, Special Issue, pp. 343-353 (Dedicated to the memory of Paul Erdős) | Article | MR 1608875 | Zbl 0899.11002
[2] The addition of finite sets. I, Izv. Vysš. Učebn. Zaved. Matematika, Tome 1959 (1959) no. 6 (13), pp. 202-213 | MR 126388 | Zbl 0096.25904
[3] Inverse problems in additive number theory. Addition of sets of residues modulo a prime, Dokl. Akad. Nauk SSSR, Tome 141 (1961), pp. 571-573 | MR 155810 | Zbl 0109.27203
[4] Foundations of a structural theory of set addition, American Mathematical Society, Providence, R. I. (1973) (Translated from the Russian, Translations of Mathematical Monographs, Vol 37) | MR 360496 | Zbl 0271.10044
[5] Sets with small sumset and rectification, Bull. London Math. Soc., Tome 38 (2006) no. 1, pp. 43-52 | Article | MR 2201602 | Zbl 1155.11307
[6] On the connectivity of Cayley digraphs, European J. Combin., Tome 5 (1984) no. 4, pp. 309-312 | MR 782052 | Zbl 0561.05028
[7] An isoperimetric method in additive theory, J. Algebra, Tome 179 (1996) no. 2, pp. 622-630 | Article | MR 1367866 | Zbl 0842.20029
[8] Subsets with small sums in abelian groups. I. The Vosper property, European J. Combin., Tome 18 (1997) no. 5, pp. 541-556 | Article | MR 1455186 | Zbl 0883.05065
[9] Some results in additive number theory. I. The critical pair theory, Acta Arith., Tome 96 (2000) no. 2, pp. 97-119 | Article | MR 1814447 | Zbl 0985.11011
[10] An inverse theorem mod , Acta Arith., Tome 92 (2000) no. 3, pp. 251-262 | Zbl 0945.11003
[11] On the critical pair theory in , Acta Arith., Tome 121 (2006) no. 2, pp. 99-115 | Article | MR 2216136 | Zbl 1147.11060
[12] On the critical pair theory in abelian groups: beyond Chowla’s theorem, Combinatorica, Tome 28 (2008) no. 4, pp. 441-467 | Article | MR 2452844
[13] On addition of two distinct sets of integers, Acta Arith., Tome 70 (1995) no. 1, pp. 85-91 | MR 1318763 | Zbl 0817.11005
[14] Additive number theory, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 165 (1996) (Inverse problems and the geometry of sumsets) | MR 1477155 | Zbl 0859.11002
[15] On Freiman’s 2.4-Theorem, Skr. K. Nor. Vidensk. Selsk. (2006) no. 4, pp. 11-18 | Zbl 1162.11010
[16] An application of graph theory to additive number theory, Sci. Ser. A Math. Sci. (N.S.), Tome 3 (1989), pp. 97-109 | MR 2314377 | Zbl 0743.05052
[17] On a generalization of a theorem by Vosper, Integers (2000), pp. A10, 10 pp. (electronic) | MR 1771980 | Zbl 0953.11031
[18] Additive combinatorics, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 105 (2006) | MR 2289012 | Zbl 1127.11002
[19] The critical pairs of subsets of a group of prime order, J. London Math. Soc., Tome 31 (1956), pp. 200-205 | Article | MR 77555 | Zbl 0072.03402