Nous établissons une version de la conjecture de Manin pour le plan projectif éclaté en trois points alignés, le corps de base étant un corps global de caractéristique positive.
We prove a version of Manin’s conjecture for the projective plane blown up in three collinear points, the base field being a global field of positive characteristic.
@article{AIF_2009__59_5_1847_0, author = {Bourqui, David}, title = {Comptage de courbes sur le plan projectif \'eclat\'e en trois points align\'es}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {1847-1895}, doi = {10.5802/aif.2478}, zbl = {1193.11066}, mrnumber = {2573192}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_5_1847_0} }
Bourqui, David. Comptage de courbes sur le plan projectif éclaté en trois points alignés. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1847-1895. doi : 10.5802/aif.2478. http://gdmltest.u-ga.fr/item/AIF_2009__59_5_1847_0/
[1] Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann., Tome 286 (1990) no. 1-3, pp. 27-43 | Article | MR 1032922 | Zbl 0679.14008
[2] Fonction zêta des hauteurs des variétés toriques déployées dans le cas fonctionnel, J. Reine Angew. Math., Tome 562 (2003), pp. 171-199 | Article | MR 2011335 | Zbl 1038.11039
[3] Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5, Duke Math. J., Tome 113 (2002) no. 3, pp. 421-464 | Article | MR 1909606 | Zbl 1054.14025
[4] On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I, Michigan Math. J., Tome 55 (2007) no. 1, pp. 51-80 | Article | MR 2320172 | Zbl 1132.14019
[5] On Manin’s conjecture for a certain singular cubic surface, Ann. Sci. École Norm. Sup. (4), Tome 40 (2007) no. 1, pp. 1-50 | Numdam | MR 2332351 | Zbl 1125.14008
[6] The Manin conjecture in dimension 2 (2007) (Lecture notes for the « School and conference on analytic number theory », ICTP, Trieste, 23/04/07-11/05/07, arXiv:0704.1217v1) | MR 2362193
[7] Points of bounded height on equivariant compactifications of vector groups. I, Compositio Math., Tome 124 (2000) no. 1, pp. 65-93 | Article | MR 1797654 | Zbl 0963.11033
[8] On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math., Tome 148 (2002) no. 2, pp. 421-452 | Article | MR 1906155 | Zbl 1067.11036
[9] The functor of a smooth toric variety, Tohoku Math. J. (2), Tome 47 (1995) no. 2, pp. 251-262 | Article | MR 1329523 | Zbl 0828.14035
[10] The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., Tome 4 (1995) no. 1, pp. 17-50 | MR 1299003 | Zbl 0846.14032
[11] Singular Del Pezzo surfaces whose universal torsors are hypersurfaces (2006) (arXiv:math/0604194v1)
[12] Rational points of bounded height on Fano varieties, Invent. Math., Tome 95 (1989) no. 2, pp. 421-435 | Article | MR 974910 | Zbl 0674.14012
[13] Equations of universal torsors and Cox rings, Mathematisches Institut, Georg-August-Universität Göttingen : Seminars Summer Term 2004, Universitätsdrucke Göttingen, Göttingen (2004), pp. 135-143 | MR 2183138 | Zbl 1108.14304
[14] Mori dream spaces and GIT, Michigan Math. J., Tome 48 (2000), pp. 331-348 (Dedicated to William Fulton on the occasion of his 60th birthday) | Article | MR 1786494 | Zbl 1077.14554
[15] Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie (2003) (arXiv:math/0303067v1) | Numdam | MR 2019019 | Zbl 1245.14021
[16] Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque (1998) no. 251, pp. 91-258 (Nombre et répartition de points de hauteur bornée (Paris, 1996)) | MR 1679841 | Zbl 0959.14007