The higher transvectants are redundant
[Les transvectants d’ordre supérieur sont redondants]
Abdesselam, Abdelmalek ; Chipalkatti, Jaydeep
Annales de l'Institut Fourier, Tome 59 (2009), p. 1671-1713 / Harvested from Numdam

Pour deux formes binaires génériques A,B, notons 𝔲 r =(A,B) r leur transvectant d’ordre r, tel que défini en théorie classique des invariants. Dans cet article, nous obtenons une classification complète des syzygies quadratiques entre les {𝔲 r }. Il en résulte que les transvectants d’ordre supérieur {𝔲 r :r2} sont redondants, en ce sens qu’ils peuvent être exprimés à partir de 𝔲 0 et 𝔲 1 . Ce résultat peut s’interpréter géométriquement en termes du plongement incomplet de Segre. Les calculs utilisés reposent sur la suite exacte de Cauchy en théorie des représentations de SL 2 , ainsi que sur la notion de symbole 9-j de la théorie quantique du moment angulaire.

Nous donnons des exemples de calculs explicites concernant SL 3 ,𝔤 2 et 𝔖 5 afin d’indiquer l’existence possible de résultats analogues pour d’autres catégories de représentations.

Let A,B denote generic binary forms, and let 𝔲 r =(A,B) r denote their r-th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the {𝔲 r }. As a consequence, we show that each of the higher transvectants {𝔲 r :r2} is redundant in the sense that it can be completely recovered from 𝔲 0 and 𝔲 1 . This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of SL 2 -representations, and the notion of a 9-j symbol from the quantum theory of angular momentum.

We give explicit computational examples for SL 3 ,𝔤 2 and 𝔖 5 to show that this result has possible analogues for other categories of representations.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/aif.2474
Classification:  13A50,  22E70
Mots clés: théorie quantique du moment angulaire, formes binaires, suite exacte de Cauchy, représentation de SL 2 , transvectants
@article{AIF_2009__59_5_1671_0,
     author = {Abdesselam, Abdelmalek and Chipalkatti, Jaydeep},
     title = {The higher transvectants are redundant},
     journal = {Annales de l'Institut Fourier},
     volume = {59},
     year = {2009},
     pages = {1671-1713},
     doi = {10.5802/aif.2474},
     zbl = {1189.13004},
     mrnumber = {2573188},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2009__59_5_1671_0}
}
Abdesselam, Abdelmalek; Chipalkatti, Jaydeep. The higher transvectants are redundant. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1671-1713. doi : 10.5802/aif.2474. http://gdmltest.u-ga.fr/item/AIF_2009__59_5_1671_0/

[1] Abdesselam, A. The combinatorics of classical invariant theory revisited by modern physics, Slides of Feb 2007 talk at the Montreal CRM workshop “Combinatorial Problems Raised by Statistical Mechanics”. Available at http://people.virginia.edu/~aa4cr/MontrealFeb07slides.pdf

[2] Abdesselam, A.; Chipalkatti, J. The bipartite Brill-Gordan locus and angular momentum, Transform. Groups, Tome 11 (2006) no. 3, pp. 341-370 | Article | MR 2264458 | Zbl 1103.14030

[3] Abdesselam, A.; Chipalkatti, J. Brill-Gordan Loci, transvectants and an analogue of the Foulkes conjecture, Adv. Math, Tome 208 (2007) no. 2, pp. 491-520 | Article | MR 2304326 | Zbl 1131.05005

[4] Akin, K.; Buchsbaum, D.; Weyman, J. Schur functors and Schur complexes, Adv. Math., Tome 44 (1982) no. 3, pp. 207-278 | Article | MR 658729 | Zbl 0497.15020

[5] Ališauskas, S. J.; Jucys, A. P. Weight lowering operators and the multiplicity-free isoscalar factors for the group R 5 , J. Math. Phys., Tome 12 (1971) no. 4, pp. 594-605 | Article | MR 286378 | Zbl 0214.28902

[6] Biedenharn, L. C.; Louck, J. D. Angular Momentum in Quantum Physics. Theory and Application, Addison-Wesley, Encyclopedia of Mathematics and its Applications, Tome 8 (1981) | MR 635121 | Zbl 0474.00023

[7] Bourbaki, N. Topological Vector Spaces, Springer-Verlag, (translated by H. G. Eggleston and S. Madan), Elements of Mathematics (1987) | MR 910295 | Zbl 0622.46001

[8] Brunnemann, J.; Thiemann, T. Simplification of the spectral analysis of the volume operator in loop quantum gravity, Class. Quant. Grav., Tome 23 (2006), pp. 1289-1346 | Article | MR 2205485 | Zbl 1089.83013

[9] Brussaard, P. J. Clebsch-Gordan- of Wigner coefficienten, Ned. Tijdschr. Natuurk., Tome 33 (1967), pp. 202-222

[10] Carter, J.; Flath, D.; Saito, M. The Classical and Quantum 6j-Symbols, Princeton University Press, Mathematical Notes (1995) no. 43 | MR 1366832 | Zbl 0851.17001

[11] Cayley, A. On linear transformations, Cambridge University Press, Collected Mathematical Works, vol. I (1889) no. 14

[12] Chipalkatti, J. On the invariant theory of the Bezoutiant, Beiträge Alg. Geom., Tome 47 (2006) no. 2, pp. 397-417 | MR 2307911 | Zbl 1112.13009

[13] Clebsch, A. Theorie der Binaren Algebraischen Formen, Teubner, Leipzig (1872) ((MiH))

[14] Condon, E. U.; Shortley, G. H. The Theory of Atomic Spectra, Cambridge University Press (1935) | Zbl 0014.04605

[15] Dolgachev, I. Lectures on Invariant Theory, Cambridge University Press, London Mathematical Society Lecture Notes (2003) no. 296 | MR 2004511 | Zbl 1023.13006

[16] Edmonds, A. R. Angular Momentum in Quantum Mechanics, Princeton University Press (1957) | MR 95700 | Zbl 0079.42204

[17] Flath, D. The Clebsch-Gordan formulas, Enseign. Math. (2), Tome 29 (1983) no. 3–4, pp. 339-346 | MR 719316 | Zbl 0524.17003

[18] Fulton, W. Young Tableaux, Cambridge University Press, London Mathematical Society Student Texts (1957) no. 35 | MR 1464693 | Zbl 0878.14034

[19] Fulton, W.; Harris, J. Representation Theory, A First Course, Springer–Verlag, Graduate Texts in Mathematics (1991) | MR 1153249 | Zbl 0744.22001

[20] Glenn, O. The Theory of Invariants, Ginn and Co., Boston (1915) ((PG))

[21] Goldberg, L. Catalan numbers and branched coverings by the Riemann sphere, Adv. Math., Tome 85 (1991) no. 2, pp. 129-144 | Article | MR 1093002 | Zbl 0732.14013

[22] Gordan, P. Die Resultante Binärer Formen, Rend. Circ. Matem. Palermo, Tome XXII (1906), pp. 161-196 | Article

[23] Grace, J. H.; Young, A. The Algebra of Invariants, 1903, Reprinted by Chelsea Publishing Co., New York (1962) ((MiH))

[24] Harris, J. Algebraic Geometry, A First Course, Springer–Verlag, Graduate Texts in Mathematics (1992) | MR 1182558 | Zbl 0779.14001

[25] Hartshorne, R. Algebraic Geometry, Springer-Verlag, Graduate Texts in Mathematics (1977) | MR 463157 | Zbl 0367.14001

[26] Huang, J.-S.; Zhu, C.-B. Weyl’s construction and tensor power decomposition for G 2 , Proc. Amer. Math. Soc., Tome 127 (1999) no. 3, pp. 925-934 | Article | MR 1469412 | Zbl 0912.22006

[27] Jahn, H. A.; Hope, J. Symmetry properties of the Wigner 9j symbol, Phys. Rev., Tome 93 (1954) no. 2, pp. 318-321 | Article | Zbl 0055.43704

[28] Jeugt, J. Van Der; Sangita, N. Pitre; Srinivasa Rao, K. Multiple hypergeometric functions and 9-j coefficients, J. Phys A: Math. Gen., Tome 27 (1994), pp. 5251-5264 | Article | MR 1295355 | Zbl 0847.33009

[29] Jucys, A. P.; Bandzaitis, A. A. Angular Momentum in Quantum Physics, Vilnius: Mokslas, 2nd Ed. (1977)

[30] Kirillov, A. A. Elements of the Theory of Representations, Springer-Verlag, Grundlehren der Mathematischen Wissenschaften, Band 220 (1976) | MR 412321 | Zbl 0342.22001

[31] Kung, J. P. S.; Rota, G.-C. The invariant theory of binary forms, Bulletin of the A.M.S., Tome 10 (1984) no. 1, pp. 27-85 | Article | MR 722856 | Zbl 0577.15020

[32] Littlewood, D. E. Invariant theory, tensors and group characters, Philos. Trans. Roy. Soc. London. Ser. A, Tome 239 (1944) no. 807, pp. 305-365 | Article | MR 10594 | Zbl 0060.04402

[33] Macdonald, I. G. Symmetric Functions and Hall polynomials, Oxford University Press, (2nd ed.) (1995) | MR 1354144 | Zbl 0824.05059

[34] Mumford, D. Lectures on Curves on an Algebraic Surface, Princeton University Press, Annals of Mathematics Studies (1966) no. 59 | MR 209285 | Zbl 0187.42701

[35] Olver, P. Classical Invariant Theory, Cambridge University Press, London Mathematical Society Student Texts (1999) | MR 1694364 | Zbl 0971.13004

[36] Racah, G. Theory of complex spectra II, Phys. Rev., Tome 62 (1942), pp. 438-462 | Article

[37] Rosengren, H. On the triple sum formula for Wigner 9j-symbols, J. Math. Phys., Tome 39 (1998) no. 12, pp. 6730-6744 | Article | MR 1660852 | Zbl 0935.81036

[38] Rosengren, H. Another proof of the triple sum formula for Wigner 9j-symbols, J. Math. Phys., Tome 40 (1999) no. 12, pp. 6689-6691 | Article | MR 1725880 | Zbl 0967.81032

[39] Salmon, G. Higher Algebra, Reprinted by Chelsea Publishing Co., New York (1965)

[40] Springer, T. A. Invariant Theory, Springer-Verlag, Lecture Notes in Mathematics (1977) no. 585 | MR 447428 | Zbl 0346.20020

[41] Stroh, E. Entwicklung der Grundsyzyganten der binären Form fünfter Ordnung, Math. Ann., Tome 34 (1889), pp. 354-370 | Article | MR 1510582

[42] Sturmfels, B. Algorithms in Invariant Theory, Springer-Verlag, Texts and Monographs in Symbolic Computation (1993) | MR 1255980 | Zbl 0802.13002

[43] Wigner, E. Group Theory and Its Application to the Quantum Theory of Atomic Spectra, Academic Press (1959) | MR 106711 | Zbl 0085.37905