Pour deux formes binaires génériques , notons leur transvectant d’ordre , tel que défini en théorie classique des invariants. Dans cet article, nous obtenons une classification complète des syzygies quadratiques entre les . Il en résulte que les transvectants d’ordre supérieur sont redondants, en ce sens qu’ils peuvent être exprimés à partir de et . Ce résultat peut s’interpréter géométriquement en termes du plongement incomplet de Segre. Les calculs utilisés reposent sur la suite exacte de Cauchy en théorie des représentations de , ainsi que sur la notion de symbole 9-j de la théorie quantique du moment angulaire.
Nous donnons des exemples de calculs explicites concernant et afin d’indiquer l’existence possible de résultats analogues pour d’autres catégories de représentations.
Let denote generic binary forms, and let denote their -th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the . As a consequence, we show that each of the higher transvectants is redundant in the sense that it can be completely recovered from and . This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of -representations, and the notion of a 9-j symbol from the quantum theory of angular momentum.
We give explicit computational examples for and to show that this result has possible analogues for other categories of representations.
@article{AIF_2009__59_5_1671_0, author = {Abdesselam, Abdelmalek and Chipalkatti, Jaydeep}, title = {The higher transvectants are redundant}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {1671-1713}, doi = {10.5802/aif.2474}, zbl = {1189.13004}, mrnumber = {2573188}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_5_1671_0} }
Abdesselam, Abdelmalek; Chipalkatti, Jaydeep. The higher transvectants are redundant. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1671-1713. doi : 10.5802/aif.2474. http://gdmltest.u-ga.fr/item/AIF_2009__59_5_1671_0/
[1] The combinatorics of classical invariant theory revisited by modern physics, Slides of Feb 2007 talk at the Montreal CRM workshop “Combinatorial Problems Raised by Statistical Mechanics”. Available at http://people.virginia.edu/~aa4cr/MontrealFeb07slides.pdf
[2] The bipartite Brill-Gordan locus and angular momentum, Transform. Groups, Tome 11 (2006) no. 3, pp. 341-370 | Article | MR 2264458 | Zbl 1103.14030
[3] Brill-Gordan Loci, transvectants and an analogue of the Foulkes conjecture, Adv. Math, Tome 208 (2007) no. 2, pp. 491-520 | Article | MR 2304326 | Zbl 1131.05005
[4] Schur functors and Schur complexes, Adv. Math., Tome 44 (1982) no. 3, pp. 207-278 | Article | MR 658729 | Zbl 0497.15020
[5] Weight lowering operators and the multiplicity-free isoscalar factors for the group , J. Math. Phys., Tome 12 (1971) no. 4, pp. 594-605 | Article | MR 286378 | Zbl 0214.28902
[6] Angular Momentum in Quantum Physics. Theory and Application, Addison-Wesley, Encyclopedia of Mathematics and its Applications, Tome 8 (1981) | MR 635121 | Zbl 0474.00023
[7] Topological Vector Spaces, Springer-Verlag, (translated by H. G. Eggleston and S. Madan), Elements of Mathematics (1987) | MR 910295 | Zbl 0622.46001
[8] Simplification of the spectral analysis of the volume operator in loop quantum gravity, Class. Quant. Grav., Tome 23 (2006), pp. 1289-1346 | Article | MR 2205485 | Zbl 1089.83013
[9] Clebsch-Gordan- of Wigner coefficienten, Ned. Tijdschr. Natuurk., Tome 33 (1967), pp. 202-222
[10] The Classical and Quantum 6j-Symbols, Princeton University Press, Mathematical Notes (1995) no. 43 | MR 1366832 | Zbl 0851.17001
[11] On linear transformations, Cambridge University Press, Collected Mathematical Works, vol. I (1889) no. 14
[12] On the invariant theory of the Bezoutiant, Beiträge Alg. Geom., Tome 47 (2006) no. 2, pp. 397-417 | MR 2307911 | Zbl 1112.13009
[13] Theorie der Binaren Algebraischen Formen, Teubner, Leipzig (1872) ((MiH))
[14] The Theory of Atomic Spectra, Cambridge University Press (1935) | Zbl 0014.04605
[15] Lectures on Invariant Theory, Cambridge University Press, London Mathematical Society Lecture Notes (2003) no. 296 | MR 2004511 | Zbl 1023.13006
[16] Angular Momentum in Quantum Mechanics, Princeton University Press (1957) | MR 95700 | Zbl 0079.42204
[17] The Clebsch-Gordan formulas, Enseign. Math. (2), Tome 29 (1983) no. 3–4, pp. 339-346 | MR 719316 | Zbl 0524.17003
[18] Young Tableaux, Cambridge University Press, London Mathematical Society Student Texts (1957) no. 35 | MR 1464693 | Zbl 0878.14034
[19] Representation Theory, A First Course, Springer–Verlag, Graduate Texts in Mathematics (1991) | MR 1153249 | Zbl 0744.22001
[20] The Theory of Invariants, Ginn and Co., Boston (1915) ((PG))
[21] Catalan numbers and branched coverings by the Riemann sphere, Adv. Math., Tome 85 (1991) no. 2, pp. 129-144 | Article | MR 1093002 | Zbl 0732.14013
[22] Die Resultante Binärer Formen, Rend. Circ. Matem. Palermo, Tome XXII (1906), pp. 161-196 | Article
[23] The Algebra of Invariants, 1903, Reprinted by Chelsea Publishing Co., New York (1962) ((MiH))
[24] Algebraic Geometry, A First Course, Springer–Verlag, Graduate Texts in Mathematics (1992) | MR 1182558 | Zbl 0779.14001
[25] Algebraic Geometry, Springer-Verlag, Graduate Texts in Mathematics (1977) | MR 463157 | Zbl 0367.14001
[26] Weyl’s construction and tensor power decomposition for , Proc. Amer. Math. Soc., Tome 127 (1999) no. 3, pp. 925-934 | Article | MR 1469412 | Zbl 0912.22006
[27] Symmetry properties of the Wigner 9j symbol, Phys. Rev., Tome 93 (1954) no. 2, pp. 318-321 | Article | Zbl 0055.43704
[28] Multiple hypergeometric functions and 9-j coefficients, J. Phys A: Math. Gen., Tome 27 (1994), pp. 5251-5264 | Article | MR 1295355 | Zbl 0847.33009
[29] Angular Momentum in Quantum Physics, Vilnius: Mokslas, 2nd Ed. (1977)
[30] Elements of the Theory of Representations, Springer-Verlag, Grundlehren der Mathematischen Wissenschaften, Band 220 (1976) | MR 412321 | Zbl 0342.22001
[31] The invariant theory of binary forms, Bulletin of the A.M.S., Tome 10 (1984) no. 1, pp. 27-85 | Article | MR 722856 | Zbl 0577.15020
[32] Invariant theory, tensors and group characters, Philos. Trans. Roy. Soc. London. Ser. A, Tome 239 (1944) no. 807, pp. 305-365 | Article | MR 10594 | Zbl 0060.04402
[33] Symmetric Functions and Hall polynomials, Oxford University Press, (2nd ed.) (1995) | MR 1354144 | Zbl 0824.05059
[34] Lectures on Curves on an Algebraic Surface, Princeton University Press, Annals of Mathematics Studies (1966) no. 59 | MR 209285 | Zbl 0187.42701
[35] Classical Invariant Theory, Cambridge University Press, London Mathematical Society Student Texts (1999) | MR 1694364 | Zbl 0971.13004
[36] Theory of complex spectra II, Phys. Rev., Tome 62 (1942), pp. 438-462 | Article
[37] On the triple sum formula for Wigner 9j-symbols, J. Math. Phys., Tome 39 (1998) no. 12, pp. 6730-6744 | Article | MR 1660852 | Zbl 0935.81036
[38] Another proof of the triple sum formula for Wigner 9j-symbols, J. Math. Phys., Tome 40 (1999) no. 12, pp. 6689-6691 | Article | MR 1725880 | Zbl 0967.81032
[39] Higher Algebra, Reprinted by Chelsea Publishing Co., New York (1965)
[40] Invariant Theory, Springer-Verlag, Lecture Notes in Mathematics (1977) no. 585 | MR 447428 | Zbl 0346.20020
[41] Entwicklung der Grundsyzyganten der binären Form fünfter Ordnung, Math. Ann., Tome 34 (1889), pp. 354-370 | Article | MR 1510582
[42] Algorithms in Invariant Theory, Springer-Verlag, Texts and Monographs in Symbolic Computation (1993) | MR 1255980 | Zbl 0802.13002
[43] Group Theory and Its Application to the Quantum Theory of Atomic Spectra, Academic Press (1959) | MR 106711 | Zbl 0085.37905