La Conjecture de la Racine prévoit que chaque difféomorphisme pseudo-Anosov d’une surface fermée a une racine ième approximative de Teichmüller pour tout . Dans cet article, on remplace la topologie de Teichmüller par la topologie hauteur-longueur – celle qui est induite par la convergence des différentielles quadratiques tangentes relativement aux fonctionnelles hauteurs et longueurs simultanément – et on prouve que chaque difféomorphisme pseudo-Anosov d’une surface fermée a une racine ième approximative hauteur-longueur pour tout .
The Root Conjecture predicts that every pseudo-Anosov diffeomorphism of a closed surface has Teichmüller approximate th roots for all . In this paper, we replace the Teichmüller topology by the heights-widths topology – that is induced by convergence of tangent quadratic differentials with respect to both the heights and widths functionals – and show that every pseudo-Anosov diffeomorphism of a closed surface has heights-widths approximate th roots for all .
@article{AIF_2009__59_4_1413_0, author = {Gendron, T. M.}, title = {Approximate roots of pseudo-Anosov diffeomorphisms}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {1413-1442}, doi = {10.5802/aif.2469}, zbl = {1179.30044}, mrnumber = {2566966}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_4_1413_0} }
Gendron, T. M. Approximate roots of pseudo-Anosov diffeomorphisms. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1413-1442. doi : 10.5802/aif.2469. http://gdmltest.u-ga.fr/item/AIF_2009__59_4_1413_0/
[1] Determinant bundles, Quillen metrics and Mumford isomorphisms over the universal commensurability Teichmüller space, Acta Math., Tome 176 (1996) no. 2, pp. 145-169 | Article | MR 1397561 | Zbl 0959.32026
[2] Roots in the mapping class group (arXiv:math/0607278) | Zbl 1160.57014
[3] Automorphisms of Surfaces After Nielsen and Thurston, Cambridge University Press, Cambridge, London Mathematical Society Student Texts 9 (1988) | Zbl 0649.57008
[4] Cohomology with bounds, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), Academic Press, London (1970), pp. 389-395 | MR 276831 | Zbl 0239.55006
[5] Travaux de Thurston sur les surfaces, Séminaire Orsay. Astérisque 66–67 (1991) (Société Mathématique de France, Paris) | MR 1134426
[6] Roots, symmetries and conjugacy of pseudo Anosov mapping classes (arXiv:0710.2043)
[7] The Theory of Matrices, AMS Chelsea Publishing, Providence, RI Tome 1 & 2 (1998) | MR 1657129 | Zbl 0927.15001
[8] Teichmüller Theory and Quadratic Differentials, John Wiley and Sons (1987) (Inc., New York) | MR 903027 | Zbl 0629.30002
[9] The Ehrenpreis conjecture and the moduli-rigidity gap, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) 311, Contemp. Math., Amer. Math. Soc., Providence, RI (2002), pp. 207-229 | MR 1940171 | Zbl 1098.30034
[10] Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl., Tome 30 (1988) no. 1, pp. 63-88 | Article | MR 964063 | Zbl 0662.57005
[11] Quadratic differentials and foliations, Acta Math., Tome 142 (1979) no. 3, 4, pp. 221-274 | Article | MR 523212 | Zbl 0415.30038
[12] Random ideal triangulations and the Weil-Petersson distance between finite degree covers of punctured Riemann surfaces (arXiv:0806.2304v1)
[13] The asymptotic geometry of Teichmüller space, Topology, Tome 19 (1980) no. 1, pp. 23-41 | Article | MR 559474 | Zbl 0439.30012
[14] Dense geodesics in moduli space, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Princeton Univ. Press, Princeton, N.J., Ann. of Math. Stud. 97 (1981), pp. 417-438 | MR 624830 | Zbl 0476.32027
[15] Amenability, Poincaré series and quasiconformal maps, Invent. Math., Tome 97 (1989) no. 1, pp. 95-127 | Article | MR 999314 | Zbl 0672.30017
[16] A construction of pseudo Anosov homeomorphisms, Trans. Amer. Math. Soc., Tome 310 (1988) no. 1, pp. 179-197 | Article | MR 930079 | Zbl 0706.57008
[17] Bounds on least dilatations, Proc. Amer. Math. Soc., Tome 113 (1991) no. 2, pp. 443-450 | Article | MR 1068128 | Zbl 0726.57013
[18] Combinatorics of Train Tracks., Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 25 (1992) | MR 1144770 | Zbl 0765.57001
[19] Quadratic Differentials, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 5 (1984) | MR 743423 | Zbl 0547.30001
[20] The Geometry and Topology of Three-Manifolds., Princeton University Notes (unpublished) (1979)
[21] On the geometry and dynamics of diffeomorphisms of surfaces., Bull. Amer. Math. Soc., Tome (N.S.) 19 (1988) no. 2, pp. 417-431 | Article | MR 956596 | Zbl 0674.57008