Soit un groupe abélien localement compact muni d’une mesure de Haar . La -boule pour une pseudo-métrique continue et invariante par translation sera dite de dimension d si pour tout . Nous montrons que si est un voisinage compact symétrique de l’identité tel que pour tout , alors est contenu dans une boule de dimension et de rayon strictement positif pour une pseudo-métrique continue et invariante par translation ; de plus .
Suppose that is a locally compact abelian group with a Haar measure . The -ball of a continuous translation invariant pseudo-metric is called -dimensional if for all . We show that if is a compact symmetric neighborhood of the identity with for all , then is contained in an -dimensional ball, , of positive radius in some continuous translation invariant pseudo-metric and .
@article{AIF_2009__59_4_1321_0, author = {Sanders, Tom}, title = {A Fre\u\i man-type theorem for locally compact abelian groups}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {1321-1335}, doi = {10.5802/aif.2465}, zbl = {1179.43002}, mrnumber = {2566962}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_4_1321_0} }
Sanders, Tom. A Freĭman-type theorem for locally compact abelian groups. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1321-1335. doi : 10.5802/aif.2465. http://gdmltest.u-ga.fr/item/AIF_2009__59_4_1321_0/
[1] A note on topological groups, Compositio Math., Tome 3 (1936), pp. 427-430 | JFM 62.0434.03 | Numdam | MR 1556955 | Zbl 0015.00702
[2] On triples in arithmetic progression, Geom. Funct. Anal., Tome 9 (1999) no. 5, pp. 968-984 | Article | MR 1726234 | Zbl 0959.11004
[3] A polynomial bound in Freĭman’s theorem, Duke Math. J., Tome 113 (2002) no. 3, pp. 399-419 | Article | MR 1909605 | Zbl 1035.11048
[4] A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal., Tome 15 (2005) no. 2, pp. 340-376 | Article | MR 2153903 | Zbl 1160.11314
[5] Freĭman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc. (2), Tome 75 (2007) no. 1, pp. 163-175 | Article | MR 2302736 | Zbl 1133.11058
[6] A quantitative version of the idempotent theorem in harmonic analysis, Ann. of Math. (2), Tome 168 (2008) no. 3, pp. 1025-1054 | Article | MR 2456890 | Zbl 1170.43003
[7] An analog of Freiman’s theorem in groups, Astérisque (1999) no. 258, pp. xv, 323-326 (Structure theory of set addition) | MR 1701207 | Zbl 0946.11007
[8] Three term arithmetic progressions and sumsets (2007) (To appear) | Zbl 1221.11029 | Zbl pre05522642
[9] The cardinality of restricted sumsets, J. Number Theory, Tome 96 (2002) no. 1, pp. 48-54 | MR 1931192 | Zbl 1043.11010
[10] On a generalization of Szemerédi’s theorem, Proc. London Math. Soc. (3), Tome 93 (2006) no. 3, pp. 723-760 | Article | MR 2266965 | Zbl pre05122336
[11] On sets with small doubling (2007) (arXiv:math/0703309v1) | MR 2492806
[12] Additive combinatorics, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 105 (2006) | MR 2289012 | Zbl 1127.11002