A Freĭman-type theorem for locally compact abelian groups
[Une généralisation du théorème de Freĭman aux groupes abéliens localement compacts]
Sanders, Tom
Annales de l'Institut Fourier, Tome 59 (2009), p. 1321-1335 / Harvested from Numdam

Soit G un groupe abélien localement compact muni d’une mesure de Haar μ. La δ-boule B δ pour une pseudo-métrique continue et invariante par translation sera dite de dimension d si μ(B 2δ )2 d μ(B δ ) pour tout δ (0,δ]. Nous montrons que si A est un voisinage compact symétrique de l’identité tel que μ(nA)n d μ(A) pour tout ndlogd, alors A est contenu dans une boule B de dimension O(dlog 3 d) et de rayon strictement positif pour une pseudo-métrique continue et invariante par translation  ; de plus μ(B)exp(O(dlogd))μ(A).

Suppose that G is a locally compact abelian group with a Haar measure μ. The δ-ball B δ of a continuous translation invariant pseudo-metric is called d-dimensional if μ(B 2δ )2 d μ(B δ ) for all δ (0,δ]. We show that if A is a compact symmetric neighborhood of the identity with μ(nA)n d μ(A) for all ndlogd, then A is contained in an O(dlog 3 d)-dimensional ball, B, of positive radius in some continuous translation invariant pseudo-metric and μ(B)exp(O(dlogd))μ(A).

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/aif.2465
Classification:  43A25,  11B25
Mots clés: théorème de Freĭman, transformée de Fourier, boules dans des pseudo-métriques, croissance polynomiale
@article{AIF_2009__59_4_1321_0,
     author = {Sanders, Tom},
     title = {A Fre\u\i man-type theorem for locally compact abelian groups},
     journal = {Annales de l'Institut Fourier},
     volume = {59},
     year = {2009},
     pages = {1321-1335},
     doi = {10.5802/aif.2465},
     zbl = {1179.43002},
     mrnumber = {2566962},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2009__59_4_1321_0}
}
Sanders, Tom. A Freĭman-type theorem for locally compact abelian groups. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1321-1335. doi : 10.5802/aif.2465. http://gdmltest.u-ga.fr/item/AIF_2009__59_4_1321_0/

[1] Birkhoff, G. A note on topological groups, Compositio Math., Tome 3 (1936), pp. 427-430 | JFM 62.0434.03 | Numdam | MR 1556955 | Zbl 0015.00702

[2] Bourgain, J. On triples in arithmetic progression, Geom. Funct. Anal., Tome 9 (1999) no. 5, pp. 968-984 | Article | MR 1726234 | Zbl 0959.11004

[3] Chang, M.-C. A polynomial bound in Freĭman’s theorem, Duke Math. J., Tome 113 (2002) no. 3, pp. 399-419 | Article | MR 1909605 | Zbl 1035.11048

[4] Green, B. J. A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal., Tome 15 (2005) no. 2, pp. 340-376 | Article | MR 2153903 | Zbl 1160.11314

[5] Green, B. J.; Ruzsa, I. Z. Freĭman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc. (2), Tome 75 (2007) no. 1, pp. 163-175 | Article | MR 2302736 | Zbl 1133.11058

[6] Green, B. J.; Sanders, Tom A quantitative version of the idempotent theorem in harmonic analysis, Ann. of Math. (2), Tome 168 (2008) no. 3, pp. 1025-1054 | Article | MR 2456890 | Zbl 1170.43003

[7] Ruzsa, I. Z. An analog of Freiman’s theorem in groups, Astérisque (1999) no. 258, pp. xv, 323-326 (Structure theory of set addition) | MR 1701207 | Zbl 0946.11007

[8] Sanders, T. Three term arithmetic progressions and sumsets (2007) (To appear) | Zbl 1221.11029 | Zbl pre05522642

[9] Schoen, Tomasz The cardinality of restricted sumsets, J. Number Theory, Tome 96 (2002) no. 1, pp. 48-54 | MR 1931192 | Zbl 1043.11010

[10] Shkredov, I. D. On a generalization of Szemerédi’s theorem, Proc. London Math. Soc. (3), Tome 93 (2006) no. 3, pp. 723-760 | Article | MR 2266965 | Zbl pre05122336

[11] Shkredov, I. D. On sets with small doubling (2007) (arXiv:math/0703309v1) | MR 2492806

[12] Tao, T. C.; Vu, V. H. Additive combinatorics, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 105 (2006) | MR 2289012 | Zbl 1127.11002