On microlocal analyticity of solutions of first-order nonlinear PDE
[Sur l’analyticité microlocale des solutions d’équations aux dérivées partielles non linéaires du premier ordre]
Berhanu, Shif
Annales de l'Institut Fourier, Tome 59 (2009), p. 1267-1290 / Harvested from Numdam

Nous étudions l’analyticité microlocale des solutions de l’équation non linéaire

ut=f(x,t,u,ux)

f(x,t,ζ 0 ,ζ) est une fonction analytique réelle, à valeurs complexes, et holomorphe en (ζ 0 ,ζ). Nous montrons que si u est une solution de classe C 2 , σ Char L u et 1 iσ([L u ,L u ¯])<0, ou si u est une solution de classe C 3 , σ Char L u , σ([L u ,L u ¯])=0 et σ([L u ,[L u ,L u ¯]])0, alors σWF a (u). Ici, WF a (u) désigne le front d’onde analytique de u et Char L u l’ensemble caractéristique de l’opérateur linéarisé. Quand m=1, nous démontrons un résultat plus général faisant intervenir les crochets des opérateurs L u et L u ¯ de tout ordre.

We study the microlocal analyticity of solutions u of the nonlinear equation

ut=f(x,t,u,ux)

where f(x,t,ζ 0 ,ζ) is complex-valued, real analytic in all its arguments and holomorphic in (ζ 0 ,ζ). We show that if the function u is a C 2 solution, σCharL u and 1 iσ([L u ,L u ¯])<0 or if u is a C 3 solution, σCharL u , σ([L u ,L u ¯])=0, and σ([L u ,[L u ,L u ¯]])0, then σWF a u. Here WF a u denotes the analytic wave-front set of u and CharL u is the characteristic set of the linearized operator. When m=1, we prove a more general result involving the repeated brackets of L u and L u ¯ of any order.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/aif.2463
Classification:  35A18,  35B65,  35F20
Mots clés: front d’onde analytique, opérateur linéarisé
@article{AIF_2009__59_4_1267_0,
     author = {Berhanu, Shif},
     title = {On microlocal analyticity of solutions of first-order nonlinear PDE},
     journal = {Annales de l'Institut Fourier},
     volume = {59},
     year = {2009},
     pages = {1267-1290},
     doi = {10.5802/aif.2463},
     zbl = {1195.35011},
     mrnumber = {2566960},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2009__59_4_1267_0}
}
Berhanu, Shif. On microlocal analyticity of solutions of first-order nonlinear PDE. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1267-1290. doi : 10.5802/aif.2463. http://gdmltest.u-ga.fr/item/AIF_2009__59_4_1267_0/

[1] Asano, A. On the C wave-front set of solutions of first order nonlinear pde’s, Proc. Amer. Math. Soc., Tome 123 (1995), pp. 3009-3019 | MR 1264801 | Zbl 0848.35024

[2] Baouendi, M. S.; Chang, C. H.; Treves, F. Microlocal hypo-analyticity and extension of CR functions, J. Differential Geometry, Tome 18 (1983), pp. 331-391 | MR 723811 | Zbl 0575.32019

[3] Chae, D.; Cordoba, A.; Cordoba, D.; Fontelos, M. Finite time singularities in a 1D model of the quasi-geostrophic equation, Advances in Mathematics, Tome 194 (2005), pp. 203-223 | Article | MR 2141858 | Zbl 1128.76372

[4] Chang, C. H. Hypo-analyticity with vanishing Levi form, Bull. Inst. Math. Acad. Sinica, Tome 13 (1985), pp. 123-136 | MR 805014 | Zbl 0584.32051

[5] Chemin, J. Y. Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires, Duke Math. J., Tome 56 (1988), pp. 431-469 | Article | MR 948529 | Zbl 0676.35009

[6] Eastwood, M. G.; Graham, C. R. Edge of the wedge theory in hypo-analytic manifolds, Commun. Partial Differ. Equations, Tome 28 (2003), pp. 2003-2028 | Article | MR 2015410 | Zbl 1063.32009

[7] Hanges, N.; Treves, F. On the analyticity of solutions of first order nonlinear PDE, Trans. Amer. Math. Soc., Tome 331 (1992), pp. 627-638 | Article | MR 1061776 | Zbl 0758.35018

[8] Himonas, A. A. On analytic microlocal hypoellipticity of linear partial differential operators of principal type, Commun. Partial Differ. Equations, Tome 11 (1986), pp. 1539-1574 | Article | MR 864417 | Zbl 0622.35013

[9] Himonas, A. A. Semirigid partial differential operators and microlocal analytic hypoellipticity, Duke Math. J., Tome 59 (1989), pp. 265-287 | Article | MR 1016887 | Zbl 0719.35019

[10] Kenyon, R.; Okounkov, A. Dimers, the complex Burger’s equation and curves inscribed in polygons (www.math.ubc.ca/ kenyon/talks/browncolloquium.pdf)

[11] Kenyon, R.; Okounkov, A. Limit shapes and the complex Burger’s equation (arXiv.org/abs/math-ph/0507007) | Zbl 1156.14029