Nous étudions l’analyticité microlocale des solutions de l’équation non linéaire
où est une fonction analytique réelle, à valeurs complexes, et holomorphe en . Nous montrons que si est une solution de classe , et , ou si est une solution de classe , , et , alors . Ici, désigne le front d’onde analytique de et l’ensemble caractéristique de l’opérateur linéarisé. Quand , nous démontrons un résultat plus général faisant intervenir les crochets des opérateurs et de tout ordre.
We study the microlocal analyticity of solutions of the nonlinear equation
where is complex-valued, real analytic in all its arguments and holomorphic in . We show that if the function is a solution, and or if is a solution, , , and , then . Here denotes the analytic wave-front set of and Char is the characteristic set of the linearized operator. When , we prove a more general result involving the repeated brackets of and of any order.
@article{AIF_2009__59_4_1267_0, author = {Berhanu, Shif}, title = {On microlocal analyticity of solutions of first-order nonlinear PDE}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {1267-1290}, doi = {10.5802/aif.2463}, zbl = {1195.35011}, mrnumber = {2566960}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_4_1267_0} }
Berhanu, Shif. On microlocal analyticity of solutions of first-order nonlinear PDE. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1267-1290. doi : 10.5802/aif.2463. http://gdmltest.u-ga.fr/item/AIF_2009__59_4_1267_0/
[1] On the wave-front set of solutions of first order nonlinear pde’s, Proc. Amer. Math. Soc., Tome 123 (1995), pp. 3009-3019 | MR 1264801 | Zbl 0848.35024
[2] Microlocal hypo-analyticity and extension of CR functions, J. Differential Geometry, Tome 18 (1983), pp. 331-391 | MR 723811 | Zbl 0575.32019
[3] Finite time singularities in a 1D model of the quasi-geostrophic equation, Advances in Mathematics, Tome 194 (2005), pp. 203-223 | Article | MR 2141858 | Zbl 1128.76372
[4] Hypo-analyticity with vanishing Levi form, Bull. Inst. Math. Acad. Sinica, Tome 13 (1985), pp. 123-136 | MR 805014 | Zbl 0584.32051
[5] Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires, Duke Math. J., Tome 56 (1988), pp. 431-469 | Article | MR 948529 | Zbl 0676.35009
[6] Edge of the wedge theory in hypo-analytic manifolds, Commun. Partial Differ. Equations, Tome 28 (2003), pp. 2003-2028 | Article | MR 2015410 | Zbl 1063.32009
[7] On the analyticity of solutions of first order nonlinear PDE, Trans. Amer. Math. Soc., Tome 331 (1992), pp. 627-638 | Article | MR 1061776 | Zbl 0758.35018
[8] On analytic microlocal hypoellipticity of linear partial differential operators of principal type, Commun. Partial Differ. Equations, Tome 11 (1986), pp. 1539-1574 | Article | MR 864417 | Zbl 0622.35013
[9] Semirigid partial differential operators and microlocal analytic hypoellipticity, Duke Math. J., Tome 59 (1989), pp. 265-287 | Article | MR 1016887 | Zbl 0719.35019
[10] Dimers, the complex Burger’s equation and curves inscribed in polygons (www.math.ubc.ca/ kenyon/talks/browncolloquium.pdf)
[11] Limit shapes and the complex Burger’s equation (arXiv.org/abs/math-ph/0507007) | Zbl 1156.14029