Nous démontrons une variante de la conjecture de Lichnerowicz-Obata sur les transformations conformes des variétés finslériennes. Plus précisément, un champ de vecteurs conforme complet et essentiel sur une variété finslérienne non-riemannienne, est un champ homothétique sur un espace vectoriel normé.
We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.
@article{AIF_2009__59_3_937_0, author = {Matveev, V. S. and Rademacher, H.-B. and Troyanov, M. and Zeghib, A.}, title = {Finsler Conformal Lichnerowicz-Obata conjecture}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {937-949}, doi = {10.5802/aif.2452}, zbl = {1179.53075}, mrnumber = {2543657}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_3_937_0} }
Matveev, V. S.; Rademacher, H.-B.; Troyanov, M.; Zeghib, A. Finsler Conformal Lichnerowicz-Obata conjecture. Annales de l'Institut Fourier, Tome 59 (2009) pp. 937-949. doi : 10.5802/aif.2452. http://gdmltest.u-ga.fr/item/AIF_2009__59_3_937_0/
[1] Transformations infinitésimales conformes des variétés finslériennes compactes, Ann. Polon. Math., Tome 36 (1979), pp. 213-229 | MR 537616 | Zbl 0413.53036
[2] Groups of conformal transformations of Riemannian spaces, (russian) Mat. Sbornik, 89 (131), 1972 (engl.transl.) Math. USSR Sbornik, Tome 18 (1972), pp. 285-301 | MR 334077 | Zbl 0263.53029
[3] Some problems on Finsler geometry, Elsevier/North-Holland, Amsterdam, Handbook of differential geometry, Tome II, p. 1–33 (2006) | MR 2194667 | Zbl 1147.53059
[4] An Introduction to Riemann-Finsler Geometry, Springer Verlag, New York, Grad. Texts Mathem., 200 (2000) | MR 1403571 | Zbl 0954.53001
[5] Lectures on Hyperbolic Geometry, Springer, Berlin (1972) | Zbl 0768.51018
[6] Projectively flat Finsler 2-spheres of constant curvature, Selecta Math., Tome 3 (1997), pp. 161-203 | Article | MR 1466165 | Zbl 0897.53052
[7] A course in metric geometry, AMS, Providence, RI, Graduate Studies in Mathematics, 33 (2001) | Zbl 0981.51016
[8] Le groupe des automorphismes conformes d’une variété de Finsler compacte, C. R. Acad.Sci, Paris, Sér. A-B 291 ((1980)) (A209-A210) | Zbl 0451.53051
[9] The action of conformal transformations on a Riemannian manifold, Math. Ann., Tome 304 (1996), pp. 277-291 | Article | MR 1371767 | Zbl 0866.53027
[10] Autour du théorème de Ferrand-Obata, Ann. Gl. Anal. Geom., Tome 21 (2002), pp. 51-62 | Article | MR 1889249 | Zbl 1005.53011
[11] Liouville’s theorem in conformal geometry, J. Math. pures appl., Tome 88 (2007), pp. 251-260 | Article | Zbl 1127.53014
[12] Conformal structures and Möbius structures, Conformal Geometry, p. 1–39, Aspects Math. E 12, Vieweg, Braunschweig (1988) | MR 979787 | Zbl 0659.53015
[13] The theorem of Lelong-Ferrand andObata, Conformal Geometry, p. 93–103, Aspects Math. E 12, Vieweg, Braunschweig (1988) | MR 979790 | Zbl 0668.53022
[14] Ueber Complexe, insbesondere Linien- und Kugel-Complexe mit Anwendung auf die Theorie partieller Differentialgleichungen, Math. Ann., Tome 5 (1872), pp. 145-246 | Article | MR 1509773
[15] Extension au cas des trois dimensions de la question du tracé géographique, Applications de l’analyse à la géométrie, Bachelier, Note VI, G. Monge, Paris (1850), pp. 609-617
[16] Lichnerowicz-Obata conjecture in dimension two, Comm. Math. Helv., Tome 81 (2005) no. 3, pp. 541-570 | Article | MR 2165202 | Zbl 1113.53025
[17] Proof of projective Lichnerowicz-Obata conjecture, J. Diff. Geom., Tome 75 (2007), pp. 459-502 (arXiv:math/0407337) | MR 2301453 | Zbl 1115.53029
[18] The conjectures about conformal transformations, J. Diff. Geom., Tome 6 (1971), pp. 247-258 | MR 303464 | Zbl 0236.53042
[19] On the conformal and CR automorphism groups, Geom. Funct. Anal., Tome 5 (1995) no. 2, pp. 464-481 | Article | MR 1334876 | Zbl 0835.53015
[20] Lectures on Finsler geometry, World Scientific, Singapore (2001) | MR 1845637 | Zbl 0974.53002
[21] Berwald metrics constructed by Chevalley’s polynomials (arXiv:math/0601522)
[22] Average Riemannian structures associated with a Finsler structure (arXiv:math/0501058v5)
[23] On a theorem of Alekseevskii concerning conformal transformations, J.Math.Soc.Japan, Tome 28 (1976), pp. 278-289 | Article | MR 405286 | Zbl 0318.53043
[24] On the conformal group of Finsler manifolds, preprint (2005) (http://www.umpa.ens-lyon.fr/~zeghib/finsconf.pdf)