Soit une algèbre de Lie classique, i.e., , , ou , et soit un élément nilpotent de . Nous étudions dans cet article diverses propriétés du centralisateur de . Les quatre premières sections concernent des problèmes assez élémentaires portant sur le centre de , la variété commutante de , ou encore les centralisateurs des paires commutantes. La seconde partie aborde des questions liées aux différentes structures de Poisson sur et aux invariants symétriques de .
Let be a classical Lie algebra, i.e., either , , or and let be a nilpotent element of . We study various properties of the centralisers . The first four sections deal with rather elementary questions, like the centre of , commuting varieties associated with , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on and symmetric invariants of .
@article{AIF_2009__59_3_903_0, author = {Yakimova, Oksana}, title = {Surprising properties of centralisers in classical Lie algebras}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {903-935}, doi = {10.5802/aif.2451}, zbl = {1187.17008}, mrnumber = {2543656}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_3_903_0} }
Yakimova, Oksana. Surprising properties of centralisers in classical Lie algebras. Annales de l'Institut Fourier, Tome 59 (2009) pp. 903-935. doi : 10.5802/aif.2451. http://gdmltest.u-ga.fr/item/AIF_2009__59_3_903_0/
[1] On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb., Tome 188 (1997) no. 5, pp. 3-20 | MR 1478627 | Zbl 0895.14015
[2] Elementary invariants for centralisers of nilpotent matrices (arXiv:math.RA/0611024)
[3] Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., New York, Van Nostrand Reinhold Mathematics Series (1993) | MR 1251060 | Zbl 0972.17008
[4] Poisson structures transverse to coadjoint orbits, Bull. Sci. Math., Tome 126 (2002) no. 7, pp. 525-534 | Article | MR 1931184 | Zbl 1074.53070
[5] Quantization of Slodowy slices, Int. Math. Res. Not. (2002) no. 5, pp. 243-255 | Article | MR 1876934 | Zbl 0989.17014
[6] Principal nilpotent pairs in a semisimple Lie algebra. I, Invent. Math., Tome 140 (2000) no. 3, pp. 511-561 | Article | MR 1760750 | Zbl 0984.17007
[7] Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., Tome 11 (2008), pp. 280-297 | Article | MR 2434879
[8] Nilpotent orbits in representation theory, Lie theory, Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 228 (2004), pp. 1-211 | MR 2042689 | Zbl pre02160654
[9] Some remarks on nilpotent orbits, J. Algebra, Tome 64 (1980) no. 1, pp. 190-213 | Article | MR 575790 | Zbl 0431.17007
[10] Lie group representations on polynomial rings, Amer. J. Math., Tome 85 (1963), pp. 327-404 | Article | MR 158024 | Zbl 0124.26802
[11] Centralizers of irregular elements in reductive algebraic groups, Pacific J. Math., Tome 104 (1983) no. 1, pp. 133-154 | MR 683733 | Zbl 0477.20025
[12] Jet schemes of locally complete intersection canonical singularities, Invent. Math., Tome 145 (2001) no. 3, pp. 397-424 (With an appendix by David Eisenbud and Edward Frenkel) | Article | MR 1856396 | Zbl 1091.14004
[13] Commuting pairs in the centralizers of -regular matrices, J. Algebra, Tome 214 (1999) no. 1, pp. 174-181 | Article | MR 1684884 | Zbl 0924.15015
[14] A degree inequality for Lie algebras with a regular Poisson semi-center (arXiv:0805.1342v1 [math.RT])
[15] On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, Tome 313 (2007) no. 1, pp. 343-391 | Article | MR 2326150 | Zbl pre05166838
[16] On the coadjoint representation of -contractions of reductive Lie algebras, Adv. Math., Tome 213 (2007) no. 1, pp. 380-404 | Article | MR 2331248 | Zbl pre05166638
[17] The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Lett., Tome 15 (2008) no. 2, pp. 239-249 | MR 2385637 | Zbl pre05310628
[18] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Tome 38 (1979) no. 3, pp. 311-327 | Numdam | MR 535074 | Zbl 0409.17006
[19] A counterexample to a problem on commuting matrices, Proc. Japan Acad. Ser. A Math. Sci., Tome 59 (1983) no. 9, p. 425-426 | Article | MR 732601 | Zbl 0566.17002
[20] Basic algebraic geometry. 1, Springer-Verlag, Berlin (1994) (Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid) | MR 1328833 | Zbl 0797.14001
[21] Conjugacy classes in algebraic groups, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 366 (1974) (Notes by Vinay V. Deodhar) | MR 352279 | Zbl 0281.20037
[22] Complete families of commuting functions for coisotropic Hamiltonian actions (arXiv:math.SG/0511498)
[23] The local structure of Poisson manifolds, J. Differential Geom., Tome 18 (1983) no. 3, pp. 523-557 | MR 723816 | Zbl 0524.58011
[24] The index of centralizers of elements in classical Lie algebras, Funktsional. Anal. i Prilozhen., Tome 40 (2006) no. 1, p. 52-64, 96 | Article | MR 2223249 | Zbl 1152.17001