Le but de cet article est de poser les fondations pour les nombres de décomposition des faisceaux pervers, de donner quelques méthodes pour les calculer dans des cas simples et de les déterminer explicitement dans deux situations : pour une singularité simple (kleinienne) de surface et pour l’adhérence de l’orbite nilpotente non-triviale minimale dans une algèbre de Lie simple.
Ce travail a des applications dans la théorie des représentations modulaires, pour les groupes de Weyl en utilisant le cône nilpotent de l’algèbre de Lie semi-simple correspondante, et pour les schémas en groupes réductifs en utilisant la grassmannienne affine du dual de Langlands.
The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.
This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.
@article{AIF_2009__59_3_1177_0, author = {Juteau, Daniel}, title = {Decomposition numbers for perverse sheaves}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {1177-1229}, doi = {10.5802/aif.2461}, zbl = {1187.14022}, mrnumber = {2543666}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_3_1177_0} }
Juteau, Daniel. Decomposition numbers for perverse sheaves. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1177-1229. doi : 10.5802/aif.2461. http://gdmltest.u-ga.fr/item/AIF_2009__59_3_1177_0/
[1] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Soc. Math. France, Paris (Astérisque) Tome 100 (1982), pp. 5-171 | MR 751966
[2] Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math., Tome 292 (1981) no. 15, pp. 707-710 | MR 618892 | Zbl 0467.20036
[3] Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981), Soc. Math. France, Paris (Astérisque) Tome 101 (1983), pp. 23-74 | MR 737927
[4] Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Hermann, Paris, Actualités Scientifiques et Industrielles, No. 1337 (1968) | MR 240238 | Zbl 0186.33001
[5] Singular elements of semi-simple algebraic groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris (1971), pp. 279-284 | MR 437798 | Zbl 0223.22012
[6] La conjecture de Weil II, Publ. Math. IHES, Tome 52 (1980), pp. 137-252 | Numdam | MR 601520 | Zbl 0456.14014
[7] Intersection homology theory, Topology, Tome 19 (1980) no. 2, pp. 135-162 | Article | MR 572580 | Zbl 0448.55004
[8] Intersection homology. II, Invent. Math., Tome 72 (1983) no. 1, pp. 77-129 | Article | MR 696691 | Zbl 0529.55007
[9] Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., Tome 120 (1996) no. 575, pp. viii+ 88 | MR 1327209 | Zbl 0849.16011
[10] Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 264 (1999), pp. 151-233 | MR 1714824 | Zbl 0954.14001
[11] Modular Springer correspondence and decomposition matrices (in preparation)
[12] Modular Springer correspondence and decomposition matrices, Université Paris 7 Denis Diderot, arXiv:0901.3671 (2007) (Ph. D. Thesis)
[13] Cohomology of the minimal nilpotent orbit, Transformation Groups, Tome 13 (2008) no. 2, pp. 355-387 | Article | MR 2426135 | Zbl 1152.22007
[14] Categories and sheaves, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 332 (2006) | MR 2182076 | Zbl 1118.18001
[15] Schubert varieties and Poincaré duality, Proc. Symposia in Pure Math., Tome 36 (1980), pp. 185-203 | MR 573434 | Zbl 0461.14015
[16] Fourier transforms of invariant functions on finite reductive Lie algebras, Springer, Berlin, Lecture Notes in Mathematics, Tome 1859 (2005) | MR 2114404 | Zbl 1076.43001
[17] Intersection cohomology complexes on a reductive group, Invent. Math., Tome 75 (1984), pp. 205-272 | Article | MR 732546 | Zbl 0547.20032
[18] The minimal degeneration singularities in the affine Grassmannians, Duke Math. J., Tome 126 (2005) no. 2, pp. 233-249 | Article | MR 2115258 | Zbl 1078.14016
[19] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Tome 166 (2007) no. 1, pp. 95-143 | Article | MR 2342692 | Zbl 1138.22013
[20] Four lectures on simple groups and singularities, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, Tome 11 (1980) | MR 563725 | Zbl 0425.22020
[21] Simple singularities and simple algebraic groups, Springer, Berlin, Lecture Notes in Mathematics, Tome 815 (1980) | MR 584445 | Zbl 0441.14002
[22] Linear algebraic groups, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 9 (1998) | MR 1642713 | Zbl 0927.20024
[23] Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc., Tome 127 (1999) no. 3, p. 935-936 | Article | MR 1610801 | Zbl 0909.22009
[24] An introduction to homological algebra, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 38 (1994) | MR 1269324 | Zbl 0797.18001