Nous considérons la région obtenue en enlevant de les disques de rayon , centrés aux points de coordonnées entières avec . Nous étudions la répartition de la longueur du libre parcours (temps de sortie) d’une particule ponctuelle, partant de sur une trajectoire rectiligne de direction quand . Pour tout nombre entier , on montre la convergence faible des mesures de probabilité attachées aux variables aléatoires , en calculant la distribution limite d’une manière explicite. Pour , respectivement , ce résultat mène à des formules asymptotiques pour le temps de sortie d’un billard avec des poches de rayon centrés aux coins dans un hexagone régulier, respectivement dans un carré.
Consider the region obtained by removing from the discs of radius , centered at the points of integer coordinates with . We are interested in the distribution of the free path length (exit time) of a point particle, moving from along a linear trajectory of direction , as . For every integer number , we prove the weak convergence of the probability measures associated with the random variables , explicitly computing the limiting distribution. For , respectively , this result leads to asymptotic formulas for the exit time of a billiard with pockets of radius centered at the corners and trajectory starting at the center in a regular hexagon, respectively in a square.
@article{AIF_2009__59_3_1043_0, author = {Boca, Florin P. and Gologan, Radu N.}, title = {On the distribution of the free path length of the linear flow in a honeycomb}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {1043-1075}, doi = {10.5802/aif.2457}, zbl = {1173.37036}, mrnumber = {2543662}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_3_1043_0} }
Boca, Florin P.; Gologan, Radu N. On the distribution of the free path length of the linear flow in a honeycomb. Annales de l'Institut Fourier, Tome 59 (2009) pp. 1043-1075. doi : 10.5802/aif.2457. http://gdmltest.u-ga.fr/item/AIF_2009__59_3_1043_0/
[1] Distribution of lattice points visible from the origin, Comm. Math. Phys., Tome 213 (2000) no. 2, pp. 433-470 | Article | MR 1785463 | Zbl 0989.11049
[2] The average length of a trajectory in a certain billiard in a flat two-torus, New York J. Math. (electronic), Tome 9 (2003), pp. 303-330 | MR 2028172 | Zbl 1066.37021
[3] The statistics of the trajectory of a certain billiard in a flat two-torus, Comm. Math. Phys., Tome 240 (2003) no. 1-2, pp. 53-73 | Article | MR 2004979 | Zbl 1078.37006
[4] On the correlations of directions in the Euclidean plane, Trans. Amer. Math. Soc., Tome 358 (2006) no. 4, pp. 1797-1825 | Article | MR 2186997 | Zbl 1154.11022
[5] The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit, Comm. Math. Phys., Tome 269 (2007) no. 2, pp. 425-471 | Article | MR 2274553 | Zbl 1143.37002
[6] On the distribution of free path lengths for the periodic Lorentz gas. III., Comm. Math. Phys., Tome 236 (2003) no. 2, pp. 199-221 | Article | MR 1981109 | Zbl 1041.82016
[7] The Boltzman-Grad limit of the periodic Lorentz gas in two space dimensions, C. R. Math. Acad. Sci. Paris, Tome 346 (2008) no. 7-8, pp. 477-482 | MR 2417573 | Zbl 1145.82019
[8] The Lyapunov exponent in the Sinai billiard in the small scatterer limit, Nonlinearity, Tome 10 (1997) no. 1, pp. 159-173 | Article | MR 1430746 | Zbl 0907.58038
[9] The periodic Lorentz gas in the Boltzman-Grad limit, International Congress of Mathematicians, Eur. Math. Soc., Zürich, Tome III (2006), pp. 183-201 | MR 2275676 | Zbl 1109.82020
[10] The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems (to appear in Ann. of Math.)