Nous présentons un exemple de structure o-minimale n’admettant pas la propriété de décomposition cellulaire . Pour ce faire, nous construisons une fonction dont le germe en admet un représentant pour tout entier , mais n’admet aucun représentant . Une condition de transcendance sur les coefficients de la série de Taylor de assure alors la quasi-analyticité de certaines algèbres différentielles engendrées par . La o-minimalité de la structure engendrée par est enfin déduite de cette quasi-analyticité.
We present an example of an o-minimal structure which does not admit cellular decomposition. To this end, we construct a function whose germ at the origin admits a representative for each integer , but no representative. A number theoretic condition on the coefficients of the Taylor series of then insures the quasianalyticity of some differential algebras induced by . The o-minimality of the structure generated by is deduced from this quasianalyticity property.
@article{AIF_2009__59_2_543_0, author = {Le Gal, Olivier and Rolin, Jean-Philippe}, title = {An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {543-562}, doi = {10.5802/aif.2439}, zbl = {1193.03065}, mrnumber = {2521427}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_2_543_0} }
Le Gal, Olivier; Rolin, Jean-Philippe. An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition. Annales de l'Institut Fourier, Tome 59 (2009) pp. 543-562. doi : 10.5802/aif.2439. http://gdmltest.u-ga.fr/item/AIF_2009__59_2_543_0/
[1] Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988) no. 67, pp. 5-42 | Article | Numdam | MR 972342 | Zbl 0674.32002
[2] -adic and real subanalytic sets, Ann. of Math. (2), Tome 128 (1988) no. 1, pp. 79-138 | Article | MR 951508 | Zbl 0693.14012
[3] Tame topology and o-minimal structures, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 248 (1998) | MR 1633348 | Zbl 0953.03045
[4] The real field with convergent generalized power series, Trans. Amer. Math. Soc., Tome 350 (1998) no. 11, pp. 4377-4421 | Article | MR 1458313 | Zbl 0905.03022
[5] The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3), Tome 81 (2000) no. 3, pp. 513-565 | Article | MR 1781147 | Zbl 1062.03029
[6] Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Tome 125 (1996) no. 1, pp. 1-12 | Article | MR 1389958 | Zbl 0851.32009
[7] Idéaux de fonctions différentiables et division des distributions, Distributions, Ed. Éc. Polytech., Palaiseau (2003), pp. 1-21 (With an Appendix: “Stanisław Łojasiewicz (1926–2002)”) | MR 2065138
[8] Sur les fonctions indéfiniment dérivables, Acta Math., Tome 72 (1940), pp. 15-29 | Article | MR 1783
[9] Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc., Tome 16 (2003) no. 4, p. 751-777 (electronic) | Article | MR 1992825 | Zbl 1095.26018
[10] A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.), Tome 5 (1999) no. 4, pp. 397-421 | Article | MR 1740677 | Zbl 0948.03037