Étant donné un ensemble semi-algébrique fermé (non nécessairement compact) de , nous construisons une fonction semi-algébrique positive et de classe telle que et telle que pour suffisamment petit, l’inclusion de dans soit une rétraction. En corollaire, nous obtenons plusieurs formules pour la caractéristique d’Euler de .
Given a closed (not necessarly compact) semi-algebraic set in , we construct a non-negative semi-algebraic function such that and such that for sufficiently small, the inclusion of in is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of .
@article{AIF_2009__59_1_429_0, author = {Dutertre, Nicolas}, title = {Semi-algebraic neighborhoods of closed~semi-algebraic sets}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {429-458}, doi = {10.5802/aif.2435}, zbl = {1174.14051}, mrnumber = {2514870}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_1_429_0} }
Dutertre, Nicolas. Semi-algebraic neighborhoods of closed semi-algebraic sets. Annales de l'Institut Fourier, Tome 59 (2009) pp. 429-458. doi : 10.5802/aif.2435. http://gdmltest.u-ga.fr/item/AIF_2009__59_1_429_0/
[1] Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed Hodge structures, Funct. Anal. Appl., Tome 12 (1978), pp. 1-14 | MR 498592 | Zbl 0407.57025
[2] Géométrie algébrique réelle, Springer-Verlag, Ergebnisse der Mathematik, Tome 12 (1987) | MR 949442 | Zbl 0633.14016
[3] Integral geometry of tame sets, Geom. Dedicata, Tome 82 (2000), pp. 285-323 | Article | MR 1789065 | Zbl 1023.53057
[4] On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981), pp.167–178, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, Tome 40 (1983) | MR 713056 | Zbl 0526.14010
[5] An introduction to o-minimal geometry, in Dottorato di Recerca in Matematica, Dip. Mat. Univ. Pisa. Istituti Editoriali e Poligrafici Internazionali, Pisa (2000) (Ph. D. Thesis)
[6] An introduction to semi-algebraic geometry, in Dottorato di Recerca in Matematica, Dip. Mat. Univ. Pisa. Istituti Editoriali e Poligrafici Internazionali, Pisa (2000) (Ph. D. Thesis)
[7] Trivialités en famille, in Real algebraic geometry (Rennes, 1991), pp.193–204, Springer, Berlin, Lecture Notes in Math., Tome 1524 (1992) | MR 1226253 | Zbl 0801.14016
[8] Neighborhoods of algebraic sets, Trans. Amer. Math. Soc., Tome 276 (1983), pp. 517-530 | Article | MR 688959 | Zbl 0529.14013
[9] Geometrical and topological properties of real polynomial fibres, Geom. Dedicata, Tome 105 (2004), pp. 43-59 | Article | MR 2057243 | Zbl 1060.14081
[10] Exposants de Lojasiewicz pour les fonctions semi-algébriques, Ann. Polon. Math., Tome 56 (1992), pp. 123-131 | MR 1159983 | Zbl 0773.14027
[11] A generalized Petrovskii inequality, Funct. Anal. Appl., Tome 8 (1974), pp. 50-56 | Article | MR 350056 | Zbl 0301.14021
[12] A generalized Petrovskii inequality II, Funct. Anal. Appl., Tome 9 (1975), p. 93-94 | MR 399502 | Zbl 0327.14018
[13] On the local degree of a smooth map, Soobshch. Akad. Nauk Gruz. SSR, Tome 85 (1977), pp. 309-311 | Zbl 0346.55008
[14] Index of a polynomial vector field, Funct. Anal. Appl., Tome 13 (1978), pp. 38-45 | Article | MR 527521 | Zbl 0437.57012
[15] Boundary indices of polynomial -forms with homogeneous components, St. Petersburg Math. J., Tome 10 (1999), pp. 553-575 | MR 1628042 | Zbl 0990.37040
[16] On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier, Tome 48 (1998), pp. 769-783 | Article | Numdam | MR 1644089 | Zbl 0934.32009
[17] Proof of the gradient conjecture of R. Thom, Ann. of Math. (2), Tome 152 (2000), pp. 763-792 | Article | MR 1815701 | Zbl 1053.37008
[18] -stratification of subanalytic functions and the Lojasiewicz inequality, C. R. Acad. Sci. Paris Sér. I Math., Tome 318 (1994), pp. 129-133 | MR 1260324 | Zbl 0799.32007
[19] Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, éd. B. Malgrange (Paris 1962), Publications du CNRS, Paris Tome 117 (1963) | MR 160856 | Zbl 0234.57007
[20] Sur les trajectoires du gradient d’une fonction analytique réelle, Seminari di Geometria 1982–1983, Bologna (1984), pp. 115-117 | MR 771152 | Zbl 0606.58045
[21] Milnor fibration at infinity, Indag. Math., Tome 3 (1992), pp. 323-335 | Article | MR 1186741 | Zbl 0806.57021
[22] On trajectories of analytic gradient vector fields, J. Differential Equations, Tome 184 (2002), pp. 215-223 | Article | MR 1929153 | Zbl 1066.58022
[23] On the topology of real algebraic surfaces, Amer. Math. Soc., Amer. Math. Soc. Transl., Tome 70 (1952) | MR 48095
[24] Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996), Cambridge Univ. Press (London Math. Soc. Lecture Note Ser.) Tome 263 (1999), pp. xx, 249-264 | MR 1709356 | Zbl 0930.58005
[25] Geometric categories and -minimal structures, Duke Math. J., Tome 84 (1996), pp. 497-540 | Article | MR 1404337 | Zbl 0889.03025