Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple
Bulois, Michaël
Annales de l'Institut Fourier, Tome 59 (2009), p. 37-80 / Harvested from Numdam

Soit θ une involution de l’algèbre de Lie semi-simple de dimension finie 𝔤 et 𝔤=𝔨𝔭 la décomposition de Cartan associée. La variété commutante nilpotente de l’algèbre de Lie symétrique (𝔤,θ) est formée des paires d’éléments nilpotents (x,y) de 𝔭 tels que [x,y]=0. Il est conjecturé que cette variété est équidimensionnelle et que ses composantes irréductibles sont indexées par les orbites d’éléments 𝔭-distingués. Cette conjecture a été démontrée par A. Premet dans le cas (𝔤×𝔤,θ) avec θ(x,y)=(y,x). Dans ce travail, nous la prouvons dans un grand nombre d’autres cas.

Let θ be an involution of the finite dimensional semisimple Lie algebra 𝔤 and 𝔤=𝔨𝔭 be the associated Cartan decomposition. The nilpotent commuting variety of (𝔤,θ) consists in pairs of nilpotent elements (x,y) of 𝔭 such that [x,y]=0. It is conjectured that this variety is equidimensional and that its irreducible components are indexed by the orbits of 𝔭 distinguished elements. This conjecture was established by A. Premet in the case (𝔤×𝔤,θ) where θ(x,y)=(y,x). In this work we prove the conjecture in a significant number of other cases.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/aif.2426
Classification:  17B20,  14L30,  17B20
Mots clés: algèbre de Lie semi-simple, paire symétrique, variété commutante, orbite nilpotente
@article{AIF_2009__59_1_37_0,
     author = {Bulois, Micha\"el},
     title = {Composantes irr\'eductibles de la vari\'et\'e commutante nilpotente d'une alg\`ebre de~Lie sym\'etrique semi-simple},
     journal = {Annales de l'Institut Fourier},
     volume = {59},
     year = {2009},
     pages = {37-80},
     doi = {10.5802/aif.2426},
     zbl = {1189.17008},
     mrnumber = {2514861},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_2009__59_1_37_0}
}
Bulois, Michaël. Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple. Annales de l'Institut Fourier, Tome 59 (2009) pp. 37-80. doi : 10.5802/aif.2426. http://gdmltest.u-ga.fr/item/AIF_2009__59_1_37_0/

[1] Baranovski, V. The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups, Tome 6 (2001), pp. 3-8 | Article | MR 1825165 | Zbl 0980.15012

[2] Bourbaki, N. Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Hermann, Paris (1968) | MR 240238 | Zbl 0483.22001

[3] Djokovic, D. Z. Classification of nilpotent elements in simple exceptional real algebras of inner type and description of their centralizers, J. Algebra, Tome 112 (1988), pp. 503-524 | Article | MR 926619 | Zbl 0639.17005

[4] Djokovic, D. Z. Classification of nilpotent elements in simple real lie algebras E 6(6) and E 6(-26) and description of their centralizers, J. Algebra, Tome 116 (1988), pp. 196-207 | Article | MR 944155 | Zbl 0653.17004

[5] Djokovic, D. Z. Explicit Cayley triples in real forms of F 2 , G 4 and E 6 , Pacific J. Math., Tome 184 (1998), pp. 231-255 | Article | Zbl 1040.17004

[6] Djokovic, D. Z. Explicit Cayley triples in real forms of E 8 , Pacific J. of Math., Tome 194 (2000), pp. 57-82 | Article | MR 1756626 | Zbl 1013.22003

[7] Djokovic, D. Z. The closure diagram for nilpotent orbits of the split real form of E 7 , Represent. Theory, Tome 5 (2001), pp. 284-316 | Article | MR 1857083 | Zbl 1050.17007

[8] Djokovic, D. Z. The closure diagrams for nilpotent orbits of real forms of E 6 , J. Lie Theory, Tome 11 (2001), pp. 381-413 | MR 1851797 | Zbl 1049.17006

[9] Djokovic, D. Z. The closure diagram for nilpotent orbits of the split real form of E 8 , Centr. Europ. J. Math., Tome 4 (2003), pp. 573-643 | Article | MR 2040654 | Zbl 1050.17006

[10] Elashvili, E. B. The centralisers of nilpotent elements in semisimple Lie algebras, Trudy Tbiliss. Inst. Mat. Nats. Nauk Gruzin., Tome 46 (1975), pp. 109-132 (In Russian)

[11] Goodman, R.; Wallach, N. R. An algebraic group approach to compact symetric spaces (1997) (http ://www.math.rutgers.edu/pub/goodman/symspace.pdf)

[12] Helgason, S. Differential geometry, Lie groups, and symmetric spaces, Academic press, Pure and applied mathematics (1978) | MR 514561 | Zbl 0451.53038

[13] Jackson, S. G.; Noel, A. G. Prehomogeneous spaces associated with nilpotent orbits (2005) (http://www.math.umb.edu/~anoel/publications/tables)

[14] Jantzen, J. C. Nilpotent orbits in representation theory, Lie Theory, Birkhäuser (Progr. Math.) Tome 228 (2004), pp. 1-211 | MR 2042689 | Zbl pre02160654

[15] Kawanaka, N. Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo, Tome 34 (1987), pp. 573-597 | MR 927602 | Zbl 0651.20046

[16] King, D. R. The component groups of nilpotents in exceptionnal simple real Lie algebras, Comm. Algebra, Tome 20 (1992), pp. 219-284 | Article | MR 1145333 | Zbl 0758.17006

[17] Kostant, B.; Rallis, S. Orbits and representations associated with symmetric spaces, Amer. J. Math., Tome 93 (1971), pp. 753-809 | Article | MR 311837 | Zbl 0224.22013

[18] Otha, T. The singularities of the closure of nilpotent orbits in certain symmetric pairs, Tôhoku Math. J., Tome 38 (1986), pp. 441-468 | Article | MR 854462 | Zbl 0654.22004

[19] Otha, T. The closure of nilpotent orbits in the classical symmetric pairs and their singularities, Tôhoku Math. J., Tome 43 (1991), pp. 161-211 | Article | MR 1104427 | Zbl 0738.22007

[20] Panyushev, D. I. The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math., Tome 94 (1994), pp. 181-199 | Numdam | MR 1302315 | Zbl 0834.17003

[21] Panyushev, D. I. On the conormal bundle of a G-stable subvariety, Manuscripta Math., Tome 99 (1999), pp. 185-202 | Article | MR 1697213 | Zbl 0961.14030

[22] Panyushev, D. I. On the irreducibility of commuting varieties associated with involutions of simple Lie algebras, Func. Anal. Appl., Tome 38 (2004), pp. 38-44 | Article | MR 2061790 | Zbl 1125.17001

[23] Panyushev, D. I. Two results on centralisers of nilpotent elements, J. Pure Appl. Algebra, Tome 212 (2008), pp. 774-779 | Article | MR 2363491 | Zbl 1137.17017

[24] Panyushev, D. I.; Yakimova, O. Symmetric pairs and associated commuting varieties, Math. Proc., Cambridge Philos. Soc., Tome 143 (2007), pp. 307-321 | MR 2364652 | Zbl 1126.17010

[25] Popov, V. L.; Tevelev, E. A. Self-dual projective algebraic varieties associated with symmetric spaces, Algebraic transformation groups and algebraic varieties, Springer Verlag (Enc. Math. Sci.) Tome 132 (2004), pp. 131-167 | MR 2090673 | Zbl 1093.14072

[26] Premet, A. Nilpotent commuting varieties of reductive Lie algebras, Invent. Math., Tome 154 (2003), pp. 653-683 | Article | MR 2018787 | Zbl 1068.17006

[27] Richardson, R. W. Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Tome 38 (1979), pp. 311-327 | Numdam | MR 535074 | Zbl 0409.17006

[28] Sabourin, H.; Yu, R. W. T. Sur l’irréductibilité de la variété commutante d’une paire symétrique réductive de rang 1, Bull. Sci. Math., Tome 126 (2002), pp. 143-150 | Article | MR 1906241 | Zbl 1017.17010

[29] Sabourin, H.; Yu, R. W. T. On the irreducibility of the commuting variety of the symmetric pair (𝔰𝔬 p+2 ,𝔰𝔬 p ×𝔰𝔬 2 ), J. Lie Theory, Tome 16 (2006), pp. 57-65 | MR 2196413 | Zbl 1128.17009

[30] Sekiguchi, J. The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS Kyoto Univ., Tome 20 (1984), pp. 155-212 | Article | MR 736100 | Zbl 0556.14022

[31] Springer, T. A.; Steinberg, R. Conjugacy classes, Seminar on algebraic groups and related finite groups, Springer (Lecture Notes in Math.) Tome 131 (1970), pp. 167-266 | MR 268192 | Zbl 0249.20024

[32] Tauvel, P.; Yu, R. W. T. Lie algebras and algebraic groups, Springer, Springer Monographs in Mathematics (2005) | MR 2146652 | Zbl 1068.17001

[33] Vinberg, E. B. Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Selecta Math. Sovietica, Tome 6 (1987), pp. 15-35 | Zbl 0612.17010