Soit une involution de l’algèbre de Lie semi-simple de dimension finie et la décomposition de Cartan associée. La variété commutante nilpotente de l’algèbre de Lie symétrique est formée des paires d’éléments nilpotents de tels que . Il est conjecturé que cette variété est équidimensionnelle et que ses composantes irréductibles sont indexées par les orbites d’éléments -distingués. Cette conjecture a été démontrée par A. Premet dans le cas avec . Dans ce travail, nous la prouvons dans un grand nombre d’autres cas.
Let be an involution of the finite dimensional semisimple Lie algebra and be the associated Cartan decomposition. The nilpotent commuting variety of consists in pairs of nilpotent elements of such that . It is conjectured that this variety is equidimensional and that its irreducible components are indexed by the orbits of distinguished elements. This conjecture was established by A. Premet in the case where . In this work we prove the conjecture in a significant number of other cases.
@article{AIF_2009__59_1_37_0, author = {Bulois, Micha\"el}, title = {Composantes irr\'eductibles de la vari\'et\'e commutante nilpotente d'une alg\`ebre de~Lie sym\'etrique semi-simple}, journal = {Annales de l'Institut Fourier}, volume = {59}, year = {2009}, pages = {37-80}, doi = {10.5802/aif.2426}, zbl = {1189.17008}, mrnumber = {2514861}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2009__59_1_37_0} }
Bulois, Michaël. Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple. Annales de l'Institut Fourier, Tome 59 (2009) pp. 37-80. doi : 10.5802/aif.2426. http://gdmltest.u-ga.fr/item/AIF_2009__59_1_37_0/
[1] The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups, Tome 6 (2001), pp. 3-8 | Article | MR 1825165 | Zbl 0980.15012
[2] Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Hermann, Paris (1968) | MR 240238 | Zbl 0483.22001
[3] Classification of nilpotent elements in simple exceptional real algebras of inner type and description of their centralizers, J. Algebra, Tome 112 (1988), pp. 503-524 | Article | MR 926619 | Zbl 0639.17005
[4] Classification of nilpotent elements in simple real lie algebras and and description of their centralizers, J. Algebra, Tome 116 (1988), pp. 196-207 | Article | MR 944155 | Zbl 0653.17004
[5] Explicit Cayley triples in real forms of , and , Pacific J. Math., Tome 184 (1998), pp. 231-255 | Article | Zbl 1040.17004
[6] Explicit Cayley triples in real forms of , Pacific J. of Math., Tome 194 (2000), pp. 57-82 | Article | MR 1756626 | Zbl 1013.22003
[7] The closure diagram for nilpotent orbits of the split real form of , Represent. Theory, Tome 5 (2001), pp. 284-316 | Article | MR 1857083 | Zbl 1050.17007
[8] The closure diagrams for nilpotent orbits of real forms of , J. Lie Theory, Tome 11 (2001), pp. 381-413 | MR 1851797 | Zbl 1049.17006
[9] The closure diagram for nilpotent orbits of the split real form of , Centr. Europ. J. Math., Tome 4 (2003), pp. 573-643 | Article | MR 2040654 | Zbl 1050.17006
[10] The centralisers of nilpotent elements in semisimple Lie algebras, Trudy Tbiliss. Inst. Mat. Nats. Nauk Gruzin., Tome 46 (1975), pp. 109-132 (In Russian)
[11] An algebraic group approach to compact symetric spaces (1997) (http ://www.math.rutgers.edu/pub/goodman/symspace.pdf)
[12] Differential geometry, Lie groups, and symmetric spaces, Academic press, Pure and applied mathematics (1978) | MR 514561 | Zbl 0451.53038
[13] Prehomogeneous spaces associated with nilpotent orbits (2005) (http://www.math.umb.edu/~anoel/publications/tables)
[14] Nilpotent orbits in representation theory, Lie Theory, Birkhäuser (Progr. Math.) Tome 228 (2004), pp. 1-211 | MR 2042689 | Zbl pre02160654
[15] Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo, Tome 34 (1987), pp. 573-597 | MR 927602 | Zbl 0651.20046
[16] The component groups of nilpotents in exceptionnal simple real Lie algebras, Comm. Algebra, Tome 20 (1992), pp. 219-284 | Article | MR 1145333 | Zbl 0758.17006
[17] Orbits and representations associated with symmetric spaces, Amer. J. Math., Tome 93 (1971), pp. 753-809 | Article | MR 311837 | Zbl 0224.22013
[18] The singularities of the closure of nilpotent orbits in certain symmetric pairs, Tôhoku Math. J., Tome 38 (1986), pp. 441-468 | Article | MR 854462 | Zbl 0654.22004
[19] The closure of nilpotent orbits in the classical symmetric pairs and their singularities, Tôhoku Math. J., Tome 43 (1991), pp. 161-211 | Article | MR 1104427 | Zbl 0738.22007
[20] The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math., Tome 94 (1994), pp. 181-199 | Numdam | MR 1302315 | Zbl 0834.17003
[21] On the conormal bundle of a -stable subvariety, Manuscripta Math., Tome 99 (1999), pp. 185-202 | Article | MR 1697213 | Zbl 0961.14030
[22] On the irreducibility of commuting varieties associated with involutions of simple Lie algebras, Func. Anal. Appl., Tome 38 (2004), pp. 38-44 | Article | MR 2061790 | Zbl 1125.17001
[23] Two results on centralisers of nilpotent elements, J. Pure Appl. Algebra, Tome 212 (2008), pp. 774-779 | Article | MR 2363491 | Zbl 1137.17017
[24] Symmetric pairs and associated commuting varieties, Math. Proc., Cambridge Philos. Soc., Tome 143 (2007), pp. 307-321 | MR 2364652 | Zbl 1126.17010
[25] Self-dual projective algebraic varieties associated with symmetric spaces, Algebraic transformation groups and algebraic varieties, Springer Verlag (Enc. Math. Sci.) Tome 132 (2004), pp. 131-167 | MR 2090673 | Zbl 1093.14072
[26] Nilpotent commuting varieties of reductive Lie algebras, Invent. Math., Tome 154 (2003), pp. 653-683 | Article | MR 2018787 | Zbl 1068.17006
[27] Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., Tome 38 (1979), pp. 311-327 | Numdam | MR 535074 | Zbl 0409.17006
[28] Sur l’irréductibilité de la variété commutante d’une paire symétrique réductive de rang 1, Bull. Sci. Math., Tome 126 (2002), pp. 143-150 | Article | MR 1906241 | Zbl 1017.17010
[29] On the irreducibility of the commuting variety of the symmetric pair , J. Lie Theory, Tome 16 (2006), pp. 57-65 | MR 2196413 | Zbl 1128.17009
[30] The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS Kyoto Univ., Tome 20 (1984), pp. 155-212 | Article | MR 736100 | Zbl 0556.14022
[31] Conjugacy classes, Seminar on algebraic groups and related finite groups, Springer (Lecture Notes in Math.) Tome 131 (1970), pp. 167-266 | MR 268192 | Zbl 0249.20024
[32] Lie algebras and algebraic groups, Springer, Springer Monographs in Mathematics (2005) | MR 2146652 | Zbl 1068.17001
[33] Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Selecta Math. Sovietica, Tome 6 (1987), pp. 15-35 | Zbl 0612.17010