Dans cet article, on étudie le problème des arcs de Nash, qui consiste à comparer le nombre de composantes irréductibles de l’espace des arcs passant par une singularité isolée de surface normale avec les courbes exceptionnelles apparaissant dans la résolution minimale de cette singularité. On montre que les deux nombres sont égaux dans le cas des points doubles rationnels .
This paper deals with the Nash problem, which consists in comparing the number of families of arcs on a singular germ of surface with the number of essential components of the exceptional divisor in the minimal resolution of this singularity. We prove their equality in the case of the rational double points ().
@article{AIF_2008__58_7_2249_0, author = {Pl\'enat, Camille}, title = {The Nash problem of arcs and the rational double points $D\_n$}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {2249-2278}, doi = {10.5802/aif.2413}, zbl = {1168.14004}, mrnumber = {2498350}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_7_2249_0} }
Plénat, Camille. The Nash problem of arcs and the rational double points $D_n$. Annales de l'Institut Fourier, Tome 58 (2008) pp. 2249-2278. doi : 10.5802/aif.2413. http://gdmltest.u-ga.fr/item/AIF_2008__58_7_2249_0/
[1] On isolated rational singularities of surfaces, Amer. J. Math., Tome 88 (1966), pp. 129-136 | Article | MR 199191 | Zbl 0142.18602
[2] Diviseurs essentiels, composantes essentielles des variétés toriques singulières, Duke Math. J., Tome 91 (1998), pp. 609-620 | Article | MR 1604179 | Zbl 0966.14038
[3] Système générateur minimal, diviseurs essentiels et G-désingularisations de varitétés toriques, Tohoku Math. J., Tome 47 (1995), pp. 125-149 | Article | MR 1311446 | Zbl 0823.14006
[4] Commutative Algebra with a view toward Algebraic Geometry, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 150 (1995) | MR 1322960 | Zbl 0819.13001
[5] Equivalence of the Nash conjecture for primitive and sandwiched singularities, Proc. Amer. Math. Soc., Tome 133 (2005), pp. 677-679 | Article | MR 2113914 | Zbl 1056.14004
[6] Arcs, valuations and the Nash map, arXiv: math.AG/0410526 | Zbl 1082.14007
[7] The local Nash problem on arc families of singularities, arXiv: math.AG/0507530 | Numdam | Zbl 1116.14030
[8] The Nash problem on arc families of singularities, Duke Math. J., Tome 120, 3 (2003), pp. 601-620 | MR 2030097 | Zbl 1052.14011
[9] Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes, Séminaire sur les Singularités des Surfaces, Lecture Notes in Math., Springer-Verlag, Tome 777 (1980), pp. 303-336 | Numdam | Zbl 0432.14020
[10] Désingularisation explicite des surfaces quasi-homogènes dans , Nova Acta Leopoldina, Tome NF 52, Nr 240 (1981), pp. 139-160 | MR 642702 | Zbl 0474.14021
[11] Courbes tracées sur un germe d’hypersurface, Amer. J. Math., Tome 112 (1990), pp. 525-568 | Article | Zbl 0743.14002
[12] Arcs and wedges on sandwiched surface singularities, Amer. J. Math., Tome 121 (1999), pp. 1191-1213 | Article | MR 1719822 | Zbl 0960.14015
[13] Commutative ring theory. Translated from the Japanese by M. Reid, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 8 (1986) | MR 879273 | Zbl 0603.13001
[14] Arc structure of singularities, A celebration of John F. Nash, Jr. Duke Math. J., Tome 81, 1 (1995), pp. 31-38 | Article | MR 1381967 | Zbl 0880.14010
[15] A propos du problème des arcs de Nash, Annales de l’Institut Fourier, Tome 55 (2005) no. 3, pp. 805-823 | Article | Numdam | Zbl 1080.14021
[16] Résolution du problème des arcs de Nash pour les points doubles rationnels ., Note C.R.A.S, Série I , Tome 340 (2005), pp. 747-750 | MR 2141063 | Zbl 1072.14004
[17] A class of non-rational surface singularities for which the Nash map is bijective, Bulletin de la SMF, Tome 134 (2006) no. 3, pp. 383-394 | Numdam | MR 2245998 | Zbl 1119.14007
[18] Families of arcs on rational surface singularities, Manuscripta Math, Tome 88, 3 (1995), pp. 321-333 | Article | MR 1359701 | Zbl 0867.14012
[19] Image of the Nash map in terms of wedges, C. R. Acad. Sci. Paris, Ser. I , Tome 338 (2004), pp. 385-390 | MR 2057169 | Zbl 1044.14032