A Hilbert Lemniscate Theorem in 2
[Un théorème de la lemniscate de Hilbert dans 2 ]
Bloom, Thomas ; Levenberg, Norman ; Lyubarskii, Yu.
Annales de l'Institut Fourier, Tome 58 (2008), p. 2191-2220 / Harvested from Numdam

Pour un compact K dans C 2 , regulier, pôlynomiallement convexe et cerclé, on construit une suite de paires {P n ,Q n } avec P n ,Q n pôlynomes homogènes en deux variables et deg P n = deg Q n =n tel que les ensembles K n :={(z,w)C 2 :|P n (z,w)|1,|Q n (z,w)|1} font une approximation de K et quand K est la fermeture d’un domaine strictement pseudoconvexe les mesures de comptage normalisées associées à l’ensemble fini {P n =Q n =1} tendent vers la mesure de Monge-Ampère pour K. L’élément principal est un théorème d’approximation pour les fonctions sousharmoniques de croissance logarithmique à une variable.

For a regular, compact, polynomially convex circled set K in C 2 , we construct a sequence of pairs {P n ,Q n } of homogeneous polynomials in two variables with deg P n = deg Q n =n such that the sets K n :={(z,w)C 2 :|P n (z,w)|1,|Q n (z,w)|1} approximate K and if K is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set {P n =Q n =1} converge to the pluripotential-theoretic Monge-Ampère measure for K. The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.

Publié le : 2008-01-01
DOI : https://doi.org/10.5802/aif.2411
Classification:  32U05,  32W20
Mots clés: potentiel logarithmique, mesure de Monge-Ampère, fonctions sousharmoniques, atomisation
@article{AIF_2008__58_6_2191_0,
     author = {Bloom, Thomas and Levenberg, Norman and Lyubarskii, Yu.},
     title = {A Hilbert Lemniscate Theorem in $\mathbb{C}^2$},
     journal = {Annales de l'Institut Fourier},
     volume = {58},
     year = {2008},
     pages = {2191-2220},
     doi = {10.5802/aif.2411},
     zbl = {1152.32015},
     mrnumber = {2473634},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2008__58_6_2191_0}
}
Bloom, Thomas; Levenberg, Norman; Lyubarskii, Yu. A Hilbert Lemniscate Theorem in $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 58 (2008) pp. 2191-2220. doi : 10.5802/aif.2411. http://gdmltest.u-ga.fr/item/AIF_2008__58_6_2191_0/

[1] Ahag, P. A Dirichlet problem for the complex Monge-Ampère operator in (f), Michigan Math. J., Tome 55 (2007) no. 1, pp. 123-138 | Article | MR 2320175 | Zbl pre05212934

[2] Bedford, E.; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Inv. Math., Tome 37 (1976), pp. 1-44 | Article | MR 445006 | Zbl 0315.31007

[3] Bedford, E.; Taylor, B. A. A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982), pp. 1-40 | Article | MR 674165 | Zbl 0547.32012

[4] Bishop, E. Mappings of partially analytic spaces, Amer. J. Math., Tome 83 (1961), pp. 209-242 | Article | MR 123732 | Zbl 0118.07701

[5] Blocki, Z. On the definition of the Monge-Ampère operator in 2 , Math. Ann., Tome 328 (2004) no. 3, pp. 415-423 | Article | MR 2036329 | Zbl 1060.32018

[6] Bloom, T. Some applications of the Robin function to multivariable approximation theory, J. Approx. Th., Tome 92 (1998), pp. 1-21 | Article | MR 1492855 | Zbl 0896.31003

[7] Bloom, T. Random polynomials and Green functions, International Math. Res. Notices, Tome 28 (2005), pp. 1689-1708 | Article | MR 2172337 | Zbl 1097.32012

[8] Cegrell, U. Weak-* convergence of Monge-Ampère measures, Math. Z., Tome 254 (2006) no. 3, pp. 505-508 | Article | MR 2244362 | Zbl 1106.32024

[9] Demailly, J.-P. Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), pp. 115-193 (Univ. Ser. Math., Plenum, New York) | MR 1211880 | Zbl 0792.32006

[10] Drasin, D. Approximation of subharmonic functions with applications, Approximation, complex analysis, and potential theory, Kluwer Acad. Publ., Dordrecht (NATO Sci. Ser. II Math. Phys. Chem.) Tome 37 (2001), pp. 163-189 (Montreal, QC, 2000) | MR 1873588 | Zbl 0991.31001

[11] Hörmander, L. An Introduction to Complex Analysis in Several Variables, Van Nostrand (1966) | MR 203075 | Zbl 0138.06203

[12] Hörmander, L. Notions of Convexity, Birkhäuser (1994) | MR 1301332 | Zbl 0835.32001

[13] Klimek, M. Pluripotential Theory, Clarendon Press, Oxford (1991) | MR 1150978 | Zbl 0742.31001

[14] Lyubarskii, Yu.; Malinnikova, E. On approximation of subharmonic functions, Journal d’Analyse Math., Tome 83 (2001), pp. 121-149 | Article | Zbl 0981.31002

[15] Ronkin, L. I. Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence (1974) | MR 346175 | Zbl 0286.32004

[16] Sadullaev, A. Rational approximation and pluripolar sets, Math USSR Sbornik, Tome 47 (1984), pp. 91-113 | Article | Zbl 0522.32012

[17] Stahl, H. The convergence of Padé approximants to functions with branch points, J. Approx. Th., Tome 91 (1997), pp. 139-204 | Article | MR 1484040 | Zbl 0896.41009

[18] Taylor, B. A. An estimate for an extremal plurisubharmonic function on n , Sémin. d’Analyse P. Lelong - P. Dolbeault - H. Skoda, Années 1981/83, Lect. Notes Math. 1028, 318-328 (1983) | MR 774982 | Zbl 0522.32014

[19] Yulmukhametov, R. Approximation of subharmonic functions, Anal. Math., Tome 11 (1985) no. 3, pp. 257-282 (Russian) | MR 822590 | Zbl 0594.31005