Pour un compact dans , regulier, pôlynomiallement convexe et cerclé, on construit une suite de paires avec pôlynomes homogènes en deux variables et tel que les ensembles font une approximation de et quand est la fermeture d’un domaine strictement pseudoconvexe les mesures de comptage normalisées associées à l’ensemble fini tendent vers la mesure de Monge-Ampère pour . L’élément principal est un théorème d’approximation pour les fonctions sousharmoniques de croissance logarithmique à une variable.
For a regular, compact, polynomially convex circled set in , we construct a sequence of pairs of homogeneous polynomials in two variables with such that the sets approximate and if is the closure of a strictly pseudoconvex domain the normalized counting measures associated to the finite set converge to the pluripotential-theoretic Monge-Ampère measure for . The key ingredient is an approximation theorem for subharmonic functions of logarithmic growth in one complex variable.
@article{AIF_2008__58_6_2191_0, author = {Bloom, Thomas and Levenberg, Norman and Lyubarskii, Yu.}, title = {A Hilbert Lemniscate Theorem in $\mathbb{C}^2$}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {2191-2220}, doi = {10.5802/aif.2411}, zbl = {1152.32015}, mrnumber = {2473634}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_6_2191_0} }
Bloom, Thomas; Levenberg, Norman; Lyubarskii, Yu. A Hilbert Lemniscate Theorem in $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 58 (2008) pp. 2191-2220. doi : 10.5802/aif.2411. http://gdmltest.u-ga.fr/item/AIF_2008__58_6_2191_0/
[1] A Dirichlet problem for the complex Monge-Ampère operator in , Michigan Math. J., Tome 55 (2007) no. 1, pp. 123-138 | Article | MR 2320175 | Zbl pre05212934
[2] The Dirichlet problem for a complex Monge-Ampère equation, Inv. Math., Tome 37 (1976), pp. 1-44 | Article | MR 445006 | Zbl 0315.31007
[3] A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982), pp. 1-40 | Article | MR 674165 | Zbl 0547.32012
[4] Mappings of partially analytic spaces, Amer. J. Math., Tome 83 (1961), pp. 209-242 | Article | MR 123732 | Zbl 0118.07701
[5] On the definition of the Monge-Ampère operator in , Math. Ann., Tome 328 (2004) no. 3, pp. 415-423 | Article | MR 2036329 | Zbl 1060.32018
[6] Some applications of the Robin function to multivariable approximation theory, J. Approx. Th., Tome 92 (1998), pp. 1-21 | Article | MR 1492855 | Zbl 0896.31003
[7] Random polynomials and Green functions, International Math. Res. Notices, Tome 28 (2005), pp. 1689-1708 | Article | MR 2172337 | Zbl 1097.32012
[8] Weak-* convergence of Monge-Ampère measures, Math. Z., Tome 254 (2006) no. 3, pp. 505-508 | Article | MR 2244362 | Zbl 1106.32024
[9] Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (1993), pp. 115-193 (Univ. Ser. Math., Plenum, New York) | MR 1211880 | Zbl 0792.32006
[10] Approximation of subharmonic functions with applications, Approximation, complex analysis, and potential theory, Kluwer Acad. Publ., Dordrecht (NATO Sci. Ser. II Math. Phys. Chem.) Tome 37 (2001), pp. 163-189 (Montreal, QC, 2000) | MR 1873588 | Zbl 0991.31001
[11] An Introduction to Complex Analysis in Several Variables, Van Nostrand (1966) | MR 203075 | Zbl 0138.06203
[12] Notions of Convexity, Birkhäuser (1994) | MR 1301332 | Zbl 0835.32001
[13] Pluripotential Theory, Clarendon Press, Oxford (1991) | MR 1150978 | Zbl 0742.31001
[14] On approximation of subharmonic functions, Journal d’Analyse Math., Tome 83 (2001), pp. 121-149 | Article | Zbl 0981.31002
[15] Introduction to the Theory of Entire Functions of Several Variables, Amer. Math. Soc., Providence (1974) | MR 346175 | Zbl 0286.32004
[16] Rational approximation and pluripolar sets, Math USSR Sbornik, Tome 47 (1984), pp. 91-113 | Article | Zbl 0522.32012
[17] The convergence of Padé approximants to functions with branch points, J. Approx. Th., Tome 91 (1997), pp. 139-204 | Article | MR 1484040 | Zbl 0896.41009
[18] An estimate for an extremal plurisubharmonic function on , Sémin. d’Analyse P. Lelong - P. Dolbeault - H. Skoda, Années 1981/83, Lect. Notes Math. 1028, 318-328 (1983) | MR 774982 | Zbl 0522.32014
[19] Approximation of subharmonic functions, Anal. Math., Tome 11 (1985) no. 3, pp. 257-282 (Russian) | MR 822590 | Zbl 0594.31005