Nous développons une théorie d’équations associées aux familles de cycles algébriques dans des groupes de Chow supérieurs. Ce formalisme est lié au type inhomogène d’équations de Picard-Fuchs. Pour les familles de surfaces K3 l’équation différentielle ordinaire non-linéaire est semblable à l’équation de Chazy.
We develop a theory of differential equations associated to families of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups). This formalism is related to inhomogenous Picard–Fuchs type differential equations. For a families of K3 surfaces the corresponding non–linear ODE turns out to be similar to Chazy’s equation.
@article{AIF_2008__58_6_2075_0, author = {del Angel, Pedro Luis and M\"uller-Stach, Stefan}, title = {Differential Equations associated to Families of Algebraic Cycles}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {2075-2085}, doi = {10.5802/aif.2406}, zbl = {1151.14009}, mrnumber = {2473629}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_6_2075_0} }
del Angel, Pedro Luis; Müller-Stach, Stefan. Differential Equations associated to Families of Algebraic Cycles. Annales de l'Institut Fourier, Tome 58 (2008) pp. 2075-2085. doi : 10.5802/aif.2406. http://gdmltest.u-ga.fr/item/AIF_2008__58_6_2075_0/
[1] –functions, Viehweg Verlag, Aspects of Mathematics, Tome E13 (1989)
[2] Higher Chow groups: Basic definitions and properties (Homepage Bloch)
[3] Algebraic cycles and the Beilinson conjectures, Contemporary Math., Tome 58 (1986), pp. 65-79 | MR 860404 | Zbl 0605.14017
[4] Symplectic manifolds and isomonodromic deformations, Adv. Math., Tome 163 (2001) no. 2, pp. 137-205 | Article | MR 1864833 | Zbl 1001.53059
[5] Period mappings and period domains, Cambridge Univ. Press (2003) | MR 2012297 | Zbl 1030.14004
[6] Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math., Tome 34 (1910), pp. 317-385 | Article
[7] The transcendental part of the regulator map for on a family of K3 surfaces, Duke Journal, Tome 12 (2002) no. 3, pp. 581-598 | Article | Zbl 1060.14011
[8] Équations différentielles à points réguliers singuliers, Springer (1970) | MR 417174 | Zbl 0244.14004
[9] Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann., Tome 63 (1907), pp. 301-321 | Article | MR 1511408
[10] A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Amer. J. Math., Tome 101 (1979), pp. 94-131 | Article | MR 527828 | Zbl 0453.14001
[11] The Abel-Jacobi map for higher Chow groups, Compositio Math., Tome 142 (2006), pp. 374-396 | Article | MR 2218900 | Zbl 1123.14006
[12] Mixed Hodge structures and singularities, Cambridge Univ. Press (1998) | MR 1621831 | Zbl 0902.14005
[13] Sixth Painlevé equation, universal elliptic curve and mirror of , Amer. Math. Soc. Translations, Tome 186 (1998) no. 2, pp. 131-151 | MR 1732409 | Zbl 0948.14025
[14] D–branes and normal functions (2007) (Preprint hep-th/0709402)
[15] Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom., Tome 6 (1997), pp. 513-543 | MR 1487225 | Zbl 0910.14017
[16] Stockholm lectures, Hermann Paris (1897)
[17] Admissible normal functions, J. Algebraic Geom., Tome 5 (1996), pp. 235-276 | MR 1374710 | Zbl 0918.14018
[18] Variation of mixed Hodge structure I, Invent. Math., Tome 80 (1985), pp. 489-542 | Article | MR 791673 | Zbl 0626.14007
[19] Special values of Dirichlet series, monodromy, and the periods of automorphic forms, AMS (1984) | MR 743544 | Zbl 0536.10023
[20] 100 years of the Painlevé equation, Sugaku, Tome 51 (1999) no. 4, pp. 395-420 | MR 1764545