Soit un germe d’intersection complète dans , , avec singularité isolée en et soit un germe de champs de vecteurs holomorphes en tangents à et qui a une singularité isolée dans en . Nous montrons que dans ce cas l’indice homologique et l’indice GSV coïncident. Dans le cas où le zéro de est aussi isolé dans l’espace ambiant , nous donnons une formule pour l’indice homologique en terme de l’algèbre linéaire locale.
Let be a germ of a complete intersection variety in , , having an isolated singularity at and be the germ of a holomorphic vector field having an isolated zero at and tangent to . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of is also isolated in the ambient space we give a formula for the homological index in terms of local linear algebra.
@article{AIF_2008__58_5_1761_0, author = {Bothmer, H.-Ch. Graf von and Ebeling, Wolfgang and G\'omez-Mont, Xavier}, title = {An Algebraic Formula for the Index of~a~Vector Field on an Isolated Complete Intersection Singularity}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {1761-1783}, doi = {10.5802/aif.2398}, zbl = {1168.32023}, mrnumber = {2445833}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_5_1761_0} }
Bothmer, H.-Ch. Graf von; Ebeling, Wolfgang; Gómez-Mont, Xavier. An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity. Annales de l'Institut Fourier, Tome 58 (2008) pp. 1761-1783. doi : 10.5802/aif.2398. http://gdmltest.u-ga.fr/item/AIF_2008__58_5_1761_0/
[1] Commutative Algebra, with a view toward Algebraic Geometry, Springer Verlag, Graduate Texts in Math. (1995) | MR 1322960 | Zbl 0819.13001
[2] An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity, J. Alg. Geom., Tome 7 (1998), pp. 731-752 | MR 1642757 | Zbl 0956.32029
[3] A law of conservation of number for local Euler characteristics, Contemp. Math., Tome 311 (2002), pp. 251-259 | MR 1940173 | Zbl 1051.32010
[4] The index of a holomorphic flow with an isolated singularity, Math. Ann., Tome 291 (1991), pp. 737-751 | Article | MR 1135541 | Zbl 0725.32012
[5] http://www.iag.uni-hannover.de/~bothmer/gobelin or at the end of the LaTeX-file of An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity at http://arXiv.org/abs/math.AG/0601640)
(A script for calculating the index of a non homogeneous vector field on a complete intersection of two singular quadrics. Available either at[6] Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/
[7] Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann., Tome 214 (1975), pp. 235-266 | Article | MR 396554 | Zbl 0285.14002
[8] Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann., Tome 250 (1980), pp. 157-173 | MR 582515 | Zbl 0417.14003
[9] Singular, a Computer Algebra System for polynomial computations, Available at http://www.www.singular.uni-kl.de/
[10] Real and complex indices of vector fields on complete intersection curves with isolated singularity, Compos. Math., Tome 141 (2005), pp. 525-540 | Article | MR 2134279 | Zbl 1077.32018
[11] A residue formula for the index of a holomorphic flow, Math. Ann., Tome 304 (1996), pp. 621-634 | Article | MR 1380446 | Zbl 0853.32040