En suivant Sibony, nous dirons qu’un domaine borne de est régulier si toute fonction continue à valeurs réelles sur la frontière de peut être prolongée continûment à une fonction plurisousharmonique sur . Le but de ce papier est d’étudier une notion analogue dans la catégorie des domaines non bornés dans . L’usage des mesures de Jensen relatives à des classes de fonctions plurisousharmoniques jouent un rôle clé dans notre travail.
Following Sibony, we say that a bounded domain in is -regular if every continuous real valued function on the boundary of can be extended continuously to a plurisubharmonic function on . The aim of this paper is to study an analogue of this concept in the category of unbounded domains in . The use of Jensen measures relative to classes of plurisubharmonic functions plays a key role in our work
@article{AIF_2008__58_4_1383_0, author = {Nguyen, Quang Dieu and Hung, Dau Hoang}, title = {Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {1383-1406}, doi = {10.5802/aif.2388}, zbl = {1156.32020}, mrnumber = {2427964}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_4_1383_0} }
Nguyen, Quang Dieu; Hung, Dau Hoang. Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$. Annales de l'Institut Fourier, Tome 58 (2008) pp. 1383-1406. doi : 10.5802/aif.2388. http://gdmltest.u-ga.fr/item/AIF_2008__58_4_1383_0/
[1] A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982), pp. 1-40 | Article | MR 674165 | Zbl 0547.32012
[2] The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Tome 23 (1996), pp. 721-747 | Numdam | MR 1469572 | Zbl 0878.31003
[3] On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Silov boundaries, Trans. Amer. Math. Soc., Tome 91 (1959), pp. 246-276 | MR 136766 | Zbl 0091.07501
[4] An Introduction to Analysis, Springer-Verlag, Graduate Texts in Mathematics, Tome 154 (1995) | MR 1320708 | Zbl 0820.00003
[5] Choquet boundary theory for certain spaces of lower semicontinuous functions, Function algebras, Chicago, Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965 (1966), pp. 300-309 | MR 196521 | Zbl 0145.38601
[6] Approximation of plurisubharmonic functions, Ark. Mat., Tome 27 (1989), pp. 257-272 | Article | MR 1022280 | Zbl 0693.32009
[7] Subharmonic function, London Mathematical Society Monographs, I, Academic Press, Harcourt Brace Jovanovich, London-New York (1976) no. 9, pp. xvii+284 | Zbl 0419.31001
[8] Pluripotential theory, The Clarendon Press Oxford University Press, New York, London Mathematical Society Monographs. New Series, Tome 6 (1991) (Oxford Science Publications) | MR 1150978 | Zbl 0742.31001
[9] Approximation of plurisubharmonic functions on bounded domains in , Michigan Math. J., Tome 54 (2006) no. 3, pp. 697-711 | Article | MR 2280502 | Zbl 1155.32021
[10] regularity of certain domains in ,, Annales Polon. Math., Tome 86 (2005) no. 2, pp. 137-152 | Article | MR 2181017 | Zbl 1088.32007
[11] Jensen measures and approximation of plurisubharmonic functions, Michigan Math. J., Tome 53 (2005), pp. 529-544 | Article | MR 2207205 | Zbl 1102.31009
[12] Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London (1966) | MR 210528 | Zbl 0142.01701
[13] The Dirichlet problem for Levi-flat graphs over unbounded domains, Internat. Math. Res. Notices, Tome 3 (1999), pp. 111-151 | Article | MR 1672246 | Zbl 0935.32027
[14] Une classe des domaines pseudoconvex, Duke Math. J., Tome 55 (1987), pp. 299-319 | Article | MR 894582 | Zbl 0622.32016
[15] The Bremermann-Dirichlet problem for unbounded domains in (http://it.arxiv.org/math/pdf/0702/0702179v1.pdf, preprint, 2007, to be published in Manuscripta Mat)
[16] Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Tome 18 (1968/1969), pp. 143-148 | MR 227465 | Zbl 0159.16002
[17] Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat., Tome 39 (2001), pp. 181-200 | Article | MR 1821089 | Zbl 1021.32014