On considère le groupe de Lie muni de la structure Riemannienne d’espace symétrique. On choisit une base de champs vectoriels invariants à gauche de l’algèbre de Lie de et on définit le Laplacien . Dans cet article nous considérons les transformées de Riesz du premier ordre et , avec . Nous prouvons que les opérateurs , mais non pas les , sont bornés de l’espace de Hardy à . Nous démontrons aussi que les transformées de Riesz du deuxième ordre sont bornées de à , tandis que les transformées et , , ne sont pas bornées.
Let be the Lie group endowed with the Riemannian symmetric space structure. Let be a distinguished basis of left-invariant vector fields of the Lie algebra of and define the Laplacian . In this paper we consider the first order Riesz transforms and , for . We prove that the operators , but not the , are bounded from the Hardy space to . We also show that the second-order Riesz transforms are bounded from to , while the transforms and , for , are not.
@article{AIF_2008__58_4_1117_0, author = {Sj\"ogren, Peter and Vallarino, Maria}, title = {Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {1117-1151}, doi = {10.5802/aif.2380}, zbl = {pre05303671}, mrnumber = {2427956}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_4_1117_0} }
Sjögren, Peter; Vallarino, Maria. Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth. Annales de l'Institut Fourier, Tome 58 (2008) pp. 1117-1151. doi : 10.5802/aif.2380. http://gdmltest.u-ga.fr/item/AIF_2008__58_4_1117_0/
[1] An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Can. J. Math., Tome 44 (1992), pp. 691-727 | Article | MR 1178564 | Zbl 0792.22005
[2] Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., Tome 65 (1992), pp. 257-297 | Article | MR 1150587 | Zbl 0764.43005
[3] Spherical Analysis on harmonic groups, Ann. Scuola Nom. Sup. Pisa Cl. Sci., Tome 23 (1996), pp. 643-679 | Numdam | MR 1469569 | Zbl 0881.22008
[4] Riesz transform on manifolds and Poincaré inequalities, Ann. Sci. École Norm. Sup., Tome 4 (2005), pp. 531-555 | Numdam | MR 2185868 | Zbl 1116.58023
[5] Riesz transform on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup., Tome 37 (2004), pp. 911-957 | Numdam | MR 2119242 | Zbl 1086.58013
[6] Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilité XXI, Lecture Notes in Math., Tome 1247 (1987), pp. 137-172 | Article | Numdam | MR 941980 | Zbl 0629.58018
[7] Duality of and BMO on positively curved manifolds and their characterizations, Lecture Notes in Math., Tome 1494 (1991), pp. 23-38 | Article | MR 1187062 | Zbl 0812.43001
[8] Extensions of Hardy spaces and their use in Analysis, Bull. Am. Math. Soc., Tome 83 (1977), pp. 569-645 | Article | MR 447954 | Zbl 0358.30023
[9] Riesz transforms for , Trans. Amer. Math. Soc., Tome 351 (1999), pp. 1151-1169 | Article | MR 1458299 | Zbl 0973.58018
[10] Riesz transforms for , C. R. Acad. Sci. Paris Sér. I Math., Tome 332 (2001), pp. 975-980 | Article | MR 1838122 | Zbl 0987.43001
[11] Estimates of lower bounds for the heat kernel on conical manifolds and Riesz transform, Arch. Math. (Basel), Tome 83 (2004), pp. 229-242 | MR 2108551 | Zbl 1076.58017
[12] Weak type estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc., Tome 323 (1991), pp. 637-649 | Article | MR 967310 | Zbl 0722.22006
[13] Singular integrals associated to the Laplacian on the affine group , Ark. Mat., Tome 30 (1992), pp. 259-281 | Article | MR 1289755 | Zbl 0776.43003
[14] Singular integrals on Iwasawa groups of rank , J. Reine Angew. Math., Tome 479 (1996), pp. 39-66 | Article | MR 1414387 | Zbl 0855.43010
[15] Haar-like expansions and boundedness of a Riesz operator on a solvable Lie group, Math. Z., Tome 232 (1999), pp. 241-256 | Article | MR 1718685 | Zbl 0936.43006
[16] A note on maximal functions on a solvable Lie group, Arch. Math. (Basel), Tome 55 (1990), pp. 156-160 | MR 1064383 | Zbl 0693.42020
[17] Multipliers and singular integrals on exponential growth groups, Math. Z., Tome 245 (2003), pp. 37-61 | Article | MR 2023952 | Zbl 1035.43001
[18] Remarques sur les transformées de Riesz sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I Math., Tome 301 (1985), p. 559-560 | MR 816628 | Zbl 0582.43003
[19] -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, Ark. Mat., Tome 41 (2003), pp. 115-132 | Article | MR 1971944 | Zbl 1038.42016
[20] - boundedness of Riesz transforms on Riemannian manifolds and on graphs, Potential Anal., Tome 14 (2001), pp. 301-330 | Article | MR 1822920 | Zbl 0982.42008
[21] Analyse sur les groupes de Lie á croissance polynomiale, Ark. Mat., Tome 28 (1990), pp. 315-331 | Article | MR 1084020 | Zbl 0715.43009
[22] An estimate for a first-order Riesz operator on the affine group, Trans. Amer. Math. Soc., Tome 351 (1999), pp. 3301-3314 | Article | MR 1475695 | Zbl 0920.43006
[23] Harmonic Analysis, Princeton University Press (1993) | MR 1232192 | Zbl 0821.42001
[24] Spaces and on exponential growth groups (2007) (submitted)