Nous montrons que l’équation de Camassa–Holm périodique possède un semi-groupe continu de solutions globales pour des conditions initiales dans . Le résultat est obtenu en utilisant un changement de variable où l’équation est réécrite en variables lagrangiennes. Pour décrire les solutions, il est nécessaire d’introduire la densité d’énergie donnée par la mesure de Radon positive qui satisfait . L’énergie totale est préservée par la solution.
We show that the periodic Camassa–Holm equation possesses a global continuous semigroup of weak conservative solutions for initial data in . The result is obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure with . The total energy is preserved by the solution.
@article{AIF_2008__58_3_945_0, author = {Holden, Helge and Raynaud, Xavier}, title = {Periodic conservative solutions of the Camassa--Holm equation}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {945-988}, doi = {10.5802/aif.2375}, zbl = {1158.35079}, mrnumber = {2427516}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_3_945_0} }
Holden, Helge; Raynaud, Xavier. Periodic conservative solutions of the Camassa–Holm equation. Annales de l'Institut Fourier, Tome 58 (2008) pp. 945-988. doi : 10.5802/aif.2375. http://gdmltest.u-ga.fr/item/AIF_2008__58_3_945_0/
[1] Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York (1988) (2nd ed) | MR 960687 | Zbl 0875.58002
[2] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York (2000) | MR 1857292 | Zbl 0957.49001
[3] Topological Methods in Hydrodynamics, Springer-Verlag, New York (1998) | MR 1612569 | Zbl 0902.76001
[4] Multi-peakons and a theorem of Stieltjes, Inverse Problems, Tome 15 (1999), p. L1-L4 | Article | MR 1675325 | Zbl 0923.35154
[5] Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., Tome 183 (2007), pp. 215-239 | Article | MR 2278406 | Zbl 1105.76013
[6] An optimal transportation metric for solutions of the Camassa–Holm equation, Methods Appl. Anal., Tome 12 (2005), pp. 191-220 | MR 2257527 | Zbl pre05137340
[7] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Tome 71 (1993), pp. 1661-1664 | Article | MR 1234453 | Zbl 0972.35521
[8] A new integrable shallow water equation, Adv. Appl. Mech., Tome 31 (1994), pp. 1-33 | Article | Zbl 0808.76011
[9] Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., Tome 37 (2005), pp. 1044-1069 | Article | MR 2192287 | Zbl 1100.35106
[10] Well-posedness for a parabolic-elliptic system, Discrete Cont. Dynam. Systems, Tome 13 (2005), pp. 659-682 | Article | MR 2152336 | Zbl 1082.35056
[11] On the Cauchy problem for the periodic Camassa–Holm equation, J. Differential Equations, Tome 141 (1997), pp. 218-235 | Article | MR 1488351 | Zbl 0889.35022
[12] On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal., Tome 155 (1998), pp. 352-363 | Article | MR 1624553 | Zbl 0907.35009
[13] Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier, Grenoble, Tome 50 (2000), pp. 321-362 | Article | Numdam | MR 1775353 | Zbl 0944.35062
[14] Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., Tome 51 (1998), pp. 475-504 | Article | MR 1604278 | Zbl 0934.35153
[15] On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., Tome 233 (2000), pp. 75-91 | Article | MR 1738352 | Zbl 0954.35136
[16] On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, Tome 35 (2002), p. R51-R79 | Article | MR 1930889 | Zbl 1039.37068
[17] Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., Tome 78 (2003), pp. 787-804 | Article | MR 2016696 | Zbl 1037.37032
[18] Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci., Tome 16 (2006), pp. 109-122 | Article | MR 2216268 | Zbl pre05073724
[19] A shallow water equation on the circle, Comm. Pure Appl. Math., Tome 52 (1999), pp. 949-982 | Article | MR 1686969 | Zbl 0940.35177
[20] Global weak solutions for a shallow water equation, Comm. Math. Phys., Tome 211 (2000), pp. 45-61 | Article | MR 1757005 | Zbl 1002.35101
[21] Stability of peakons, Comm. Pure Appl. Math., Tome 53 (2000), pp. 603-610 | Article | MR 1737505 | Zbl 1049.35149
[22] Real Analysis, John Wiley & Sons Inc., New York (1999) (2nd ed.) | MR 1681462 | Zbl 0549.28001
[23] Conservative solution of the Camassa–Holm equation on the real line (2005) (3, arXiv:math.AP/0511549)
[24] Convergent difference schemes for the Hunter–Saxton equation, Math. Comp., Tome 76 (2007), pp. 699-744 | Article | MR 2291834 | Zbl 1114.65101
[25] Convergence of a finite difference scheme for the Camassa–Holm equation, SIAM J. Numer. Anal., Tome 44 (2006), pp. 1655-1680 | Article | MR 2257121 | Zbl 1122.76065
[26] A convergent numerical scheme for the Camassa–Holm equation based on multipeakons, Discrete Contin. Dyn. Syst., Tome 14 (2006), pp. 505-523 | MR 2171724 | Zbl 1111.35061
[27] Global conservative multipeakon solutions of the Camassa–Holm equation, J. Hyperbolic Differ. Equ., Tome 4 (2007), pp. 39-64 | Article | MR 2303475 | Zbl 1128.65065
[28] Global conservative solutions of the Camassa–Holm equation — a Lagrangian point of view, Comm. Partial Differential Equations, Tome 32 (2007), pp. 1511-1549 | Article | MR 2372478 | Zbl pre05228944
[29] Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, Tome 233 (2007), pp. 448-484 | Article | MR 2292515 | Zbl 1116.35115
[30] Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech., Tome 455 (2002), pp. 63-82 | Article | MR 1894796 | Zbl 1037.76006
[31] A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys., Tome 24 (1998), pp. 203-208 | Article | Zbl 0901.58022
[32] Classical solutions of the periodic Camassa–Holm equation., Geom. Funct. Anal., Tome 12 (2002), pp. 1080-1104 | Article | Zbl pre01890448
[33] Functional Analysis, Springer-Verlag, Berlin, Classics in Mathematics (1995) (Reprint of the sixth (1980) edition) | MR 1336382