Soit une algèbre préprojective de type , et soit le groupe algébrique complexe semi-simple et simplement connexe correspondant. Nous étudions les modules rigides des sous-catégories où désigne un -module injectif, et nous introduisons une opération de mutation sur les modules rigides complets de . Ceci conduit à des structures d’algèbre amassée sur les anneaux de coordonnées des variétés de drapeaux partiels associées à .
Let be a preprojective algebra of type , and let be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories for an injective -module, and we introduce a mutation operation between complete rigid modules in . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to .
@article{AIF_2008__58_3_825_0, author = {Gei\ss , Christof and Leclerc, Bernard and Schr\"oer, Jan}, title = {Partial flag varieties and preprojective algebras}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {825-876}, doi = {10.5802/aif.2371}, zbl = {1151.16009}, mrnumber = {2427512}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_3_825_0} }
Geiß, Christof; Leclerc, Bernard; Schröer, Jan. Partial flag varieties and preprojective algebras. Annales de l'Institut Fourier, Tome 58 (2008) pp. 825-876. doi : 10.5802/aif.2371. http://gdmltest.u-ga.fr/item/AIF_2008__58_3_825_0/
[1] Almost split sequences in subcategories, J. Algebra, Tome 69 (1981), pp. 426-454 | Article | MR 617088 | Zbl 0457.16017
[2] Homologically finite subcategories, Representations of algebras and related topics (Kyoto, 1990), Cambridge Univ. Press (London Math. Soc. Lecture Note Ser.) Tome 168 (1992), pp. 1-42 | MR 1211476 | Zbl 0774.16005
[3] Representations of partially ordered sets and 1-Gorenstein Artin algebras, Proceedings, Conference on Ring Theory, Antwerp, 1978, Dekker (1979), pp. 385-433 | MR 563305 | Zbl 0707.16003
[4] Cluster algebras III. Upper bounds and double Bruhat cells, Duke Math. J., Tome 126 (2005), pp. 1-52 | Article | MR 2110627 | Zbl pre02147024
[5] Linear algebraic groups, Springer, 2nd Enlarged Edition (1991) | MR 1102012 | Zbl 0726.20030
[6] Groupes et algèbres de Lie, Hermann, chap 4, 5, 6 (1968) | MR 240238 | Zbl 0483.22001
[7] Cluster structures for 2-Calabi-Yau categories and unipotent groups (arXiv:math.RT/0701557)
[8] Tilting theory and cluster combinatorics, Adv. Math., Tome 204 (2006), pp. 572-618 | Article | MR 2249625 | Zbl 1127.16011
[9] Double Bruhat cells and total positivity, J. Amer. Math. Soc., Tome 12 (1999), pp. 335-380 | Article | MR 1652878 | Zbl 0913.22011
[10] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Tome 15 (2002), pp. 497-529 | Article | MR 1887642 | Zbl 1021.16017
[11] Cluster algebras II. Finite type classification, Invent. Math., Tome 154 (2003), pp. 63-121 | Article | MR 2004457 | Zbl 1054.17024
[12] Cluster algebra structures and semicanonical bases for unipotent subgroups (arXiv:math.RT/0703039)
[13] Semicanonical bases and preprojective algebras, Ann. Sci. Ecole Norm. Sup., Tome 38 (2005), pp. 193-253 | Numdam | MR 2144987
[14] Rigid modules over preprojective algebras, Invent. Math., Tome 165 (2006), pp. 589-632 | Article | MR 2242628 | Zbl pre05057631
[15] Verma modules and preprojective algebras, Nagoya Math. J., Tome 182 (2006), pp. 241-258 | MR 2235343 | Zbl 1137.17021
[16] Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc., Tome 75 (2007), pp. 718-740 | Article | MR 2352732 | Zbl pre05196120
[17] Semicanonical bases and preprojective algebras II: A multiplication formula, Compositio Math., Tome 143 (2007), pp. 1313-1334 | Article | MR 2360317 | Zbl pre05206856
[18] Extension-orthogonal components of preprojective varieties, Trans. Amer. Math. Soc., Tome 357 (2005), pp. 1953-1962 | Article | MR 2115084 | Zbl 1111.14045
[19] Cluster algebras and Poisson geometry, Moscow Math. J., Tome 3 (2003), pp. 899-934 | MR 2078567 | Zbl 1057.53064
[20] Triangulated categories in the representation theory of finite-dimensional algebras, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series 119 (1988) (x+208pp) | MR 935124 | Zbl 0635.16017
[21] On splitting torsion theories induced by tilting modules, Comm. Alg., Tome 11 (1983), pp. 427-439 | Article | MR 689417 | Zbl 0506.16018
[22] Geometric construction of crystal bases, Duke Math. J., Tome 89 (1997), pp. 9-36 | Article | MR 1458969 | Zbl 0901.17006
[23] On triangulated orbit categories, Doc. Math., Tome 10 (2005), pp. 551-581 ((electronic)) | MR 2184464 | Zbl 1086.18006
[24] Approximations and almost split sequences in homologically finite subcategories, J. Algebra, Tome 198 (1997), pp. 135-163 | Article | MR 1482979 | Zbl 0903.16014
[25] Flag varieties, Hermann, Travaux en cours, Tome 63 (2001) | Zbl 1136.14306
[26] Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., Tome 3 (1990), pp. 447-498 | Article | MR 1035415 | Zbl 0703.17008
[27] Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., Tome 4 (1991), pp. 365-421 | Article | MR 1088333 | Zbl 0738.17011
[28] Introduction to quantum groups, Birkhäuser (1993) | MR 1227098 | Zbl 0788.17010
[29] Total positivity, grassmannians and networks (arXiv:math.CO/0609764.)
[30] The preprojective algebra of a quiver, Algebras and Modules II, (Geiranger, 1996), CMS Conf. Proc., Tome 24 (1998), pp. 467-480 (AMS) | MR 1648647 | Zbl 0928.16012
[31] Grassmannians and cluster algebras, Proc. London Math. Soc., Tome 92 (2006), pp. 345-380 | Article | MR 2205721 | Zbl 1088.22009
[32] Recognizing cluster algebras of finite type, Electron. J. Combin., Tome 14 (2007) no. 1, pp. Research Paper 3, 35 pp. (electronic) | MR 2285804 | Zbl 1114.05103