On Dirichlet Series and Petersson Products for Siegel Modular Forms
[Sur les séries de Dirichlet et les produits de Petersson pour les formes modulaires de Siegel.]
Böcherer, Siegfried ; Chiera, Francesco Ludovico
Annales de l'Institut Fourier, Tome 58 (2008), p. 801-824 / Harvested from Numdam

On démontre que la série de Dirichlet à la Rankin-Selberg associée à toute paire de formes modulaires de Siegel (non nécessairement paraboliques) de degré n et poids kn/2 admet un prolongement méromorphe à . En outre, on montre que le produit de Petersson de toute paire de formes modulaires de carré-intégrable et de poids kn/2 a une expression en termes du résidu en s=k de la série de Dirichlet associée. Ces résultats sont bien connus pour les formes paraboliques. La méthode que nous adoptons généralise celle qui a été introduite par Maass (dans le cas n=2) et se base sur l’utilisation de certains opérateurs différentiels invariants.

We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree n and weight kn/2 has meromorphic continuation to . Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight kn/2 may be expressed in terms of the residue at s=k of the associated Dirichlet series.

Publié le : 2008-01-01
DOI : https://doi.org/10.5802/aif.2370
Classification:  11F46,  11F60,  11F66
Mots clés: méthode de Rankin et Selberg, produit de Petersson, formes modulaires non paraboliques, opérateurs différentielles invariants
@article{AIF_2008__58_3_801_0,
     author = {B\"ocherer, Siegfried and Chiera, Francesco Ludovico},
     title = {On Dirichlet Series and Petersson Products for Siegel Modular Forms},
     journal = {Annales de l'Institut Fourier},
     volume = {58},
     year = {2008},
     pages = {801-824},
     doi = {10.5802/aif.2370},
     zbl = {pre05298322},
     mrnumber = {2427511},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2008__58_3_801_0}
}
Böcherer, Siegfried; Chiera, Francesco Ludovico. On Dirichlet Series and Petersson Products for Siegel Modular Forms. Annales de l'Institut Fourier, Tome 58 (2008) pp. 801-824. doi : 10.5802/aif.2370. http://gdmltest.u-ga.fr/item/AIF_2008__58_3_801_0/

[1] Böcherer, S. Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen., Math. Z., Tome 183 (1983), pp. 21-46 | Article | MR 701357 | Zbl 0497.10020

[2] Böcherer, S.; Chiera, F.L. Petersson products of singular and almost singular theta series., Manuscr. Math., Tome 115 (2004) no. 3, pp. 281-297 | Article | MR 2102053 | Zbl 1072.11031

[3] Böcherer, S.; Raghavan, S. On Fourier coefficients of Siegel modular forms., J. Reine Angew. Math., Tome 384 (1988), pp. 80-101 | Article | MR 929979 | Zbl 0636.10022

[4] Chiera, F.L. On Petersson products of not necessarily cuspidal modular forms., J. Number Theory, Tome 122 (2007) no. 1, pp. 13-24 | Article | MR 2287108 | Zbl 1118.11021

[5] Courtieu, Michel; Panchishkin, A. Non-Archimedean L -functions and arithmetical Siegel modular forms. 2nd, augmented ed., Lecture Notes in Mathematics 1471. Berlin: Springer. viii, 196 p. (2004) | MR 2034949 | Zbl 1070.11023

[6] Deitmar, Anton; Krieg, Aloys Theta correspondence for Eisenstein series., Math. Z., Tome 208 (1991) no. 2, pp. 273-288 | Article | MR 1128710 | Zbl 0773.11028

[7] Feit, Paul Poles and residues of Eisenstein series for symplectic and unitary groups., Mem. Am. Math. Soc., Tome 346 (1986), pp. 89 p. | MR 840834 | Zbl 0591.10017

[8] Freitag, E. Siegelsche Modulfunktionen., Grundlehren der mathematischen Wissenschaften, 254. Berlin-Heidelberg-New York: Springer-Verlag. X, 341 S. DM 168.00; $ 67,20 (1983) | MR 871067 | Zbl 0498.10016

[9] Harish-Chandra Discrete series for semisimple Lie groups. II: Explicit determination of the characters., Acta Math., Tome 116 (1966), pp. 1-111 | Article | MR 219666 | Zbl 0199.20102

[10] Harris, Michael The rationality of holomorphic Eisenstein series., Invent. Math., Tome 63 (1981), pp. 305-310 | Article | MR 610541 | Zbl 0452.10031

[11] Harris, Michael; Jakobsen, Hans Plesner Singular holomorphic representations and singular modular forms., Math. Ann., Tome 259 (1982), pp. 227-244 | Article | MR 656663 | Zbl 0466.32017

[12] Kalinin, V.L. Eisenstein series on the symplectic group., Math. USSR, Sb., Tome 32 (1978), pp. 449-476 | Article | MR 563064 | Zbl 0397.10021

[13] Kalinin, V.L. Analytic properties of the convolution of Siegel modular forms of genus n., Math. USSR, Sb., Tome 48 (1984), pp. 193-200 | Article | MR 687612 | Zbl 0542.10020

[14] Kitaoka, Y. Lectures on Siegel modular forms and representation by quadratic forms., Lectures on Mathematics and Physics. Mathematics, 77. Tata Institute of Fundamental Research, Bombay. Berlin etc.: Springer-Verlag. V, 227 p. (1986) | MR 843330 | Zbl 0596.10020

[15] Klingen, Helmut Introductory lectures on Siegel modular forms., Cambridge Studies in Advanced Mathematics, 20. Cambridge: Cambridge University Press. x, 162 p. (1990) | MR 1046630 | Zbl 0693.10023

[16] Kohnen, W. A simple remark on eigenvalues of Hecke operators on Siegel modular forms., Abh. Math. Semin. Univ. Hamb., Tome 57 (1987), pp. 33-36 | Article | MR 927162 | Zbl 0641.10022

[17] Kohnen, W.; Skoruppa, N.-P. A certain Dirichlet series attached to Siegel modular forms of degree two., Invent. Math., Tome 95 (1989) no. 3, pp. 541-558 | Article | MR 979364 | Zbl 0665.10019

[18] Lang, Serge Introduction to modular forms. (With two appendices, by D. B. Zagier and by W. Feit)., Grundlehren der mathematischen Wissenschaften, 222. Berlin-Heidelberg-New York: Springer-Verlag. IX, 261 p. with 9 figs. (1976) | MR 429740 | Zbl 0344.10011

[19] Lieman, Daniel B. The GL(3) Rankin-Selberg convolution for functions not of rapid decay., Duke Math. J., Tome 69 (1993) no. 1, pp. 219-242 | Article | MR 1201699 | Zbl 0779.11021

[20] Maass, Hans Siegel’s modular forms and Dirichlet series. Course given at the University of Maryland, 1969-1970., Lecture Notes in Mathematics. 216. Berlin-Heidelberg-New York: Springer-Verlag. 328 p. DM 20.00; $ 5.50 (1971) | Zbl 0224.10028

[21] Maass, Hans Dirichletsche Reihen und Modulformen zweiten Grades. (Dirichlet series and modular forms of second degree)., Acta Arith., Tome 24 (1973), pp. 225-238 | MR 327663 | Zbl 0273.10022

[22] Mizumoto, Shin-Ichiro Eisenstein series for Siegel modular groups., Math. Ann., Tome 297 (1993) no. 4, pp. 581-625 | Article | MR 1245409 | Zbl 0786.11024

[23] Mizuno, Y. The Rankin-Selberg convolution for Cohen’s Eisenstein series of half integral weight., Abh. Math. Semin. Univ. Hamb., Tome 75 (2005), pp. 1-20 | Article | Zbl 1082.11025

[24] Petersson, Hans Über die Berechnung der Skalarprodukte ganzer Modulformen., Comment. Math. Helv., Tome 22 (1949), pp. 168-199 | Article | MR 28426 | Zbl 0032.20601

[25] Rankin, R.A. Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms., Proc. Camb. Philos. Soc., Tome 35 (1939), pp. 357-372 | Article | Zbl 0021.39202

[26] Satake, I. Caractérisation de l’espace des Spitzenformen, Séminaire Henri Cartan; 10 no.1 (1957/1958). Fonctions Automorphes. Exposé 9 bis. Secrétariat Math., Paris, 1958. (1958) | Numdam

[27] Sato, Mikio; Shintani, Takuro On zeta functions associated with prehomogeneous vector spaces., Ann. of Math., Tome 100 (1974) no. 2, pp. 131-170 | Article | MR 344230 | Zbl 0309.10014

[28] Shimura, Goro The special values of the zeta functions associated with cusp forms., Commun. Pure Appl. Math., Tome 29 (1976), pp. 783-804 | Article | MR 434962 | Zbl 0348.10015

[29] Shimura, Goro Invariant differential operators on Hermitian symmetric spaces., Ann. of Math., Tome 132 (1990) no. 2, pp. 237-272 | Article | MR 1070598 | Zbl 0718.11020

[30] Shimura, Goro Differential operators, holomorphic projection, and singular forms., Duke Math. J., Tome 76 (1994) no. 1, pp. 141-173 | Article | MR 1301189 | Zbl 0829.11029

[31] Weissauer, Rainer Vektorwertige Siegelsche Modulformen kleinen Gewichtes., J. Reine Angew. Math., Tome 343 (1983), pp. 184-202 | Article | MR 705885 | Zbl 0502.10012

[32] Yamazaki, Tadashi Rankin-Selberg method for Siegel cusp forms., Nagoya Math. J., Tome 120 (1990), pp. 35-49 | MR 1086567 | Zbl 0715.11025

[33] Zagier, Don The Rankin-Selberg method for automorphic functions which are not of rapid decay., J. Fac. Sci., Univ. Tokyo, Sect. I A, Tome 28 (1981), pp. 415-437 | MR 656029 | Zbl 0505.10011