Soit une courbe elliptique définie sur . Nous démontrons des versions faibles des congruences de Kato, pour les valeurs spéciales Plus précisément, nous vérifions que les congruences sont vraies modulo , plutôt que modulo . Bien que ça ne suffise pas pour établir l’existence d’une fonction -adique qui vit dans elles fournissent beaucoup d’indices de l’existence de cet objet analytique. Par exemple, si les congruences trouvées numériquement par Tim et Vladimir Dokchitser sont vraies.
Let be a semistable elliptic curve over . We prove weak forms of Kato’s -congruences for the special values More precisely, we show that they are true modulo , rather than modulo . Whilst not quite enough to establish that there is a non-abelian -function living in , they do provide strong evidence towards the existence of such an analytic object. For example, if these verify the numerical congruences found by Tim and Vladimir Dokchitser.
@article{AIF_2008__58_3_1023_0, author = {Delbourgo, Daniel and Ward, Tom}, title = {Non-abelian congruences between $L$-values of elliptic curves}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {1023-1055}, doi = {10.5802/aif.2377}, zbl = {1165.11077}, mrnumber = {2427518}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_3_1023_0} }
Delbourgo, Daniel; Ward, Tom. Non-abelian congruences between $L$-values of elliptic curves. Annales de l'Institut Fourier, Tome 58 (2008) pp. 1023-1055. doi : 10.5802/aif.2377. http://gdmltest.u-ga.fr/item/AIF_2008__58_3_1023_0/
[1] -functions of elliptic curves and false Tate curve extensions, University of Cambridge (2005) (Ph. D. Thesis)
[2] Algebraicity of -values for elliptic curves in a false Tate curve tower, Math. Proc. Cambridge Philos. Soc., Tome 142 (2007) no. 2, pp. 193-204 | Article | MR 2314594 | Zbl pre05152948
[3] The main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. (2005) no. 101, pp. 163-208 | Numdam | MR 2217048 | Zbl 1108.11081
[4] Discriminant of Hecke fields and twisted adjoint -values for , Invent. Math., Tome 134 (1998) no. 3, pp. 547-577 | Article | MR 1660929 | Zbl 0924.11035
[5] Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3), Tome 94 (2007) no. 1, pp. 211-272 (With an appendix by J. Coates and R. Sujatha) | Article | MR 2294995 | Zbl pre05129594
[6] Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3), Tome 91 (2005) no. 2, pp. 300-324 (With an appendix by Tom Fisher) | Article | MR 2167089 | Zbl 1076.11042
[7] -adic interpolation of convolutions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), Tome 47 (1997) no. 2, pp. 365-428 | Article | Numdam | MR 1450421 | Zbl 0882.11025
[8] -adic -functions for modular forms, Compositio Math., Tome 62 (1987) no. 1, pp. 31-46 | Numdam | MR 892149 | Zbl 0618.10027
[9] of some non-commutative completed group rings, -Theory, Tome 34 (2005) no. 2, pp. 99-140 | Article | MR 2180109 | Zbl 1080.19002
[10] Non-Archimedean -functions of Siegel and Hilbert modular forms, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1471 (1991) | MR 1122593 | Zbl 0732.11026
[11] Sur les représentations modulaires de degré de , Duke Math. J., Tome 54 (1987) no. 1, pp. 179-230 | Article | MR 885783 | Zbl 0641.10026
[12] Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J., Tome 48 (1981) no. 3, pp. 697 | Article | Zbl 0464.10016 | Zbl 0394.10015
[13] Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math., Tome 98 (1989) no. 1, pp. 75-106 | Article | MR 1010156 | Zbl 0697.14023
[14] Number theoretic background, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Amer. Math. Soc., Providence, R.I. (Proc. Sympos. Pure Math., XXXIII) (1979), pp. 3-26 | MR 546607 | Zbl 0422.12007