On définie une transformation naturelle de type Riemann-Roch entre les K-théories algébrique et topologique supérieures bivariantes dans la catégorie des espaces complexes.
One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.
@article{AIF_2008__58_2_571_0, author = {Levy, Roni N.}, title = {Riemann-Roch theorem for higher bivariant K-functors}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {571-601}, doi = {10.5802/aif.2361}, zbl = {1164.19001}, mrnumber = {2410383}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_2_571_0} }
Levy, Roni N. Riemann-Roch theorem for higher bivariant K-functors. Annales de l'Institut Fourier, Tome 58 (2008) pp. 571-601. doi : 10.5802/aif.2361. http://gdmltest.u-ga.fr/item/AIF_2008__58_2_571_0/
[1] Calcul différentiel et classes caractéristiques en géométrie algébrique (1985) (Prepublication de l’Institut Fourier, Grenoble) | Zbl 0749.14008
[2] K-theory, Harvard Univ., Cambridge, Mass. (1965)
[3] Riemann-Roch and topological K-theory for singular varieties, Acta Math., Tome 143 (1979), pp. 155-192 | Article | MR 549773 | Zbl 0474.14004
[4] Ein Beweis des grauertsche Bildgarbensatzes nach ideen von B. Malgrange, Manuscripta Math., Tome 5 (1971), pp. 19-44 | Article | MR 308437 | Zbl 0242.32008
[5] Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., Tome 31 (1981) no. 243, pp. vi+165 | MR 609831 | Zbl 0467.55005
[6] Riemann-Roch theorems for higher algebraic K-theory, Adv. Math., Tome 40 (1981), pp. 203-289 | Article | MR 624666 | Zbl 0478.14010
[7] Comparing algebraic and topological K-theory, Lect. Notes in Math., Tome 1491 (1992), pp. 54-99
[8] Topologie algebraique et theorie de faisceaux, Hermann, Paris (1958) | MR 102797 | Zbl 0080.16201
[9] Riemann-Roch theorem for complex spaces, Acta Mathematica, Tome 158 (1987), pp. 149-188 | Article | MR 892589 | Zbl 0627.32004
[10] Higher algebraic K-theory I, Springer Lect. Notes in Math., Tome 341 (1972), pp. 85-148 | Article | MR 338129 | Zbl 0292.18004
[11] Higher algebraic K-theory of schemes and of derived categories, The Grothendieck festschrift III, Progress in Math. v., Tome 88 (1990), pp. 247-437 (Birkhauser) | Article | MR 1106918
[12] Algebraic K-theory of spaces, Springer Lect. Notes in Math., Tome 1126 (1985), pp. 318-419 | Article | MR 802796 | Zbl 0579.18006