Nous montrons que le système intégrable de Beauville sur un espace de dimension dix de modules de faisceaux sur une surface K3 construit par un espace de modules de faisceaux stables sur les cubiques de dimension trois est algébriquement complètement intégrable. Nous utilisons la construction d’O’Grady d’une résolution symplectique de l’espace des modules de faisceaux sur une surface K3.
We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.
@article{AIF_2008__58_2_559_0, author = {Hwang, Jun-Muk and Nagai, Yasunari}, title = {Algebraic complete integrability of an integrable system of Beauville}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {559-570}, doi = {10.5802/aif.2360}, zbl = {1144.14037}, mrnumber = {2410382}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_2_559_0} }
Hwang, Jun-Muk; Nagai, Yasunari. Algebraic complete integrability of an integrable system of Beauville. Annales de l'Institut Fourier, Tome 58 (2008) pp. 559-570. doi : 10.5802/aif.2360. http://gdmltest.u-ga.fr/item/AIF_2008__58_2_559_0/
[1] Vector bundles on the cubic threefold, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 312 (2002), pp. 71-86 | MR 1941574 | Zbl 1056.14059
[2] Espace des modules de faisceaux de rang 2 semi-stables de classes de Chern et sur la cubique de , Internat. Math. Res. Notices, Tome 19 (2000), pp. 985-1004 | Article | MR 1792346 | Zbl 1024.14004
[3] The Geometry of Moduli Spaces of Sheaves, Friedr. Vieweg & Sohn, Braunschweig, Aspects of Mathematics, E31 (1997) | MR 1450870 | Zbl 0872.14002
[4] Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2), Tome 122 (1985) no. 1, pp. 41-85 | Article | MR 799252 | Zbl 0592.14011
[5] La singularité de O’Grady, J. Alg. Geom., Tome 15 (2006) no. 4, pp. 753-770 | Article | Zbl 05141406
[6] Symplectic structure of the moduli space of sheaves on an abelian or surface, Invent. Math., Tome 77 (1984) no. 1, pp. 101-116 | Article | MR 751133 | Zbl 0565.14002
[7] Desingularized moduli spaces of sheaves on a , J. Reine Angew. Math., Tome 512 (1999), pp. 49-117 | Article | Zbl 0928.14029