Nous montrons une relation entre la torsion de Reidemeister non-acyclique et un zéro de la torsion de Reidemeister acyclique pour une représentation -régulière dans ou du groupe d’un nœud. Alors nous pouvons donner une méthode pour calculer la torsion de Reidemeister non-acyclique de l’extérieur d’un nœud. Nous calculons un nouvel exemple et étudions le comportement de la torsion de Reidemeister non-acyclique associée à un nœud à deux-ponts et une -représentations du groupe du nœud.
We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a -regular or -representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a -bridge knot and -representations of its knot group.
@article{AIF_2008__58_1_337_0, author = {Yamaguchi, Yoshikazu}, title = {A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion}, journal = {Annales de l'Institut Fourier}, volume = {58}, year = {2008}, pages = {337-362}, doi = {10.5802/aif.2352}, zbl = {1158.57027}, mrnumber = {2401224}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2008__58_1_337_0} }
Yamaguchi, Yoshikazu. A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion. Annales de l'Institut Fourier, Tome 58 (2008) pp. 337-362. doi : 10.5802/aif.2352. http://gdmltest.u-ga.fr/item/AIF_2008__58_1_337_0/
[1] Cohomology of Groups, Springer-Verlag, New York, Graduate Texts in Mathematics 87 (1994) | MR 1324339 | Zbl 0584.20036
[2] -representation spaces for two-bridge knot groups, Math. Ann., Tome 288 (1990), pp. 103-119 | Article | MR 1070927 | Zbl 0694.57003
[3] Knots Second edition , Walter de Gruyter, de Gruyter Studies in Mathematics 5 (2003) | MR 1959408 | Zbl 1009.57003
[4] Non abelian Reidemeister torsion and volume form on the -representation space of knot groups, Ann. Inst. Fourier, Tome 55 (2005), pp. 1685-1734 | Article | Numdam | MR 2172277 | Zbl 1077.57009
[5] Non abelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull., Tome 49 (2006), pp. 55-71 | Article | MR 2198719 | Zbl 1101.57010
[6] On the asymptotic expansion of the colored Jones polynomial for torus knots (to appear in Math. Ann., arXiv:math.GT/0510607)
[7] Deformations of dihedral representations, Proc. Amer. Math. Soc., Tome 125 (1997), pp. 3039-3047 | Article | MR 1443155 | Zbl 0883.57001
[8] Chern-Simons invariants of -manifolds and representation spaces of knot groups, Math. Ann., Tome 287 (1990), pp. 343-367 | Article | MR 1054574 | Zbl 0681.57006
[9] Twisted Alexander Invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology, Tome 38 (1999), pp. 635-661 | Article | MR 1670420 | Zbl 0928.57005
[10] Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math., Tome 174 (1996), pp. 431-442 | MR 1405595 | Zbl 0863.57001
[11] Representations of knot groups in , Trans. Amer. Math. Soc., Tome 326 (1991), pp. 795-828 | Article | MR 1008696 | Zbl 0743.57003
[12] Whitehead torsion, Bull. Amer. Math. Soc., Tome 72 (1966), pp. 358-426 | Article | MR 196736 | Zbl 0147.23104
[13] Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle Weber & Schmidt Boston, Mass., Michigan State Univ. 1967 (1968), pp. 115-133 | MR 242163 | Zbl 0179.52302
[14] Valuations, trees, and degenerations of hyperbolic structures, Ann. of Math. (2), Tome 120 (1984), pp. 401-476 | Article | MR 769158 | Zbl 0583.57005
[15] Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc., Tome 128 (1997) no. 612, pp. x+139 | MR 1396960 | Zbl 0881.57020
[16] Nonabelian representations of -bridge knot groups, Quart. J. Math. Oxford Ser. (2), Tome 35 (1984), pp. 191-208 | Article | MR 745421 | Zbl 0549.57005
[17] Knots and links, Publish or Perish Inc., Houston, TX, Mathematics Lecture Series 7 (1990) | MR 1277811 | Zbl 0854.57002
[18] Algebraic Topology, Springer-Verlag, New York-Berlin (1981) | MR 666554 | Zbl 0810.55001
[19] Introduction to combinatorial torsions, Birkhäuser Verlag, Basel, Lectures in Mathematics ETH Zürich (2001) | MR 1809561 | Zbl 0970.57001
[20] Torsions of -dimensional manifolds, Birkhäuser Verlag, Basel, Progress in Mathematics 208 (2002) | MR 1958479 | Zbl 1012.57002
[21] Twisted Alexander polynomial for finitely presentable groups, Topology, Tome 33 (1994), pp. 241-256 | Article | MR 1273784 | Zbl 0822.57006
[22] Limit values of the non-acyclic Reidemeister torsion for knots (arXiv:math.GT/0512277)