On considère une application , Anosov non linéaire qui conserve l’aire sur le tore . C’est un des exemples les plus simples d’une dynamique chaotique. On s’intéresse à la dynamique quantique pour les temps longs, générée par un opérateur unitaire . La formule des traces semi-classique habituelle exprime pour fini, dans la limite , en termes d’orbites périodiques de de période . Des travaux récents atteignent des temps où est le temps d’Ehrenfest, et est le coefficient de Lyapounov. En utilisant une description uniforme de la dynamique au moyen d’une forme normale semi-classique, nous montrons comment étendre la formule des traces pour des temps plus longs, de la forme , où est une constante arbitraire, et avec une erreur arbitrairement petite.
We consider a nonlinear area preserving Anosov map on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator . The usual semi-classical Trace formula expresses for finite time , in the limit , in terms of periodic orbits of of period . Recent work reach time where is the Ehrenfest time, and is the Lyapounov coefficient. Using a semi-classical normal form description of the dynamics uniformly over phase space, we show how to extend the trace formula for longer time of the form where is any constant, with an arbitrary small error.
@article{AIF_2007__57_7_2525_0, author = {Faure, Fr\'ed\'eric}, title = {Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {2525-2599}, doi = {10.5802/aif.2341}, zbl = {1145.81035}, mrnumber = {2394550}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_7_2525_0} }
Faure, Frédéric. Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2525-2599. doi : 10.5802/aif.2341. http://gdmltest.u-ga.fr/item/AIF_2007__57_7_2525_0/
[1] Entropy and the localization of eigenfunctions (2004) (Ann. of Math.)
[2] Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold (2006) (ArXiv Mathematical Physics e-prints, math-ph/0610019)
[3] Geometrical methods in the theory of ordinary differential equations, Springer Verlag (1988) | MR 947141 | Zbl 0507.34003
[4] Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymptot. Anal., Tome 21 (1999) no. 2, pp. 149-160 | MR 1723551 | Zbl 0934.35142
[5] Random matrix theories and chaotic dynamics, Chaos and Quantum Physics, Proceedings of the Les Houches Summer School (1989), Tome 45 (1991), pp. 87-199 | MR 1188418
[6] Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett., Tome 52 (1984) no. 1, pp. 1-4 | Article | MR 730191 | Zbl 1119.81326
[7] Exponential mixing and ln(h) timescales in quantized hyperbolic maps on the torus, Comm. Math. Phys., Tome 211 (2000), pp. 659-686 | Article | MR 1773813 | Zbl 1053.81032
[8] Long time propagation and control on scarring for perturbated quantized hyperbolic toral automorphisms, Annales Henri Poincaré, Tome 6 (2005) no. 5, pp. 885-913 | Article | MR 2219861 | Zbl 1088.81049
[9] Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Tome 111 (2002) no. 2, pp. 223-252 | Article | MR 1882134 | Zbl 1069.35061
[10] Quantum normal forms, moyal star product and bohr-sommerfeld approximation, J. Phys. A: Math. Gen., Tome 38 (2005), pp. 1997-2004 | Article | MR 2124376 | Zbl 1073.81056
[11] Ergodicité et fonctions propres du laplacien. (Ergodicity and eigenfunctions of the Laplacian), Commun. Math. Phys., Tome 102 (1985), pp. 497-502 | MR 818831 | Zbl 0592.58050
[12] Équilibre instable en régime semi-classique - I. Concentration microlocale, Communications in Partial Differential Equations, Tome 19 (1994) no. 9–10, pp. 1535-1563 | Article | MR 1294470 | Zbl 0819.35116
[13] Équilibre instable en régime semi-classique - II. Conditions de Bohr-Sommerfeld, Annales de l’Institut Henri Poincaré- Physique Théorique, Tome 61 (1994) no. 3, pp. 347-367 | Numdam | Zbl 0845.35076
[14] Singular bohr-sommerfeld rules, Commun. Math. Phys, Tome 205 (1999), pp. 459-500 | Article | MR 1712567 | Zbl 01379901
[15] A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition, Commun. Math. Phys., Tome 202 (1999) no. 2, pp. 463-480 | Article | MR 1690026 | Zbl 0939.58031
[16] Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal., Tome 14 (1997) no. 4, pp. 377-404 | MR 1461126 | Zbl 0894.35026
[17] Recent results on quantum map eigenstates, Mathematical physics of quantum mechanics, Springer, Berlin (Lecture Notes in Phys.) Tome 690 (2006), pp. 367-381 | MR 2234923 | Zbl 1167.81388
[18] Quantum chaos: a brief first visit, Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000), Amer. Math. Soc. (Contemp. Math.) Tome 289 (2001), pp. 161-218 | MR 1864542 | Zbl 1009.81020
[19] Nonstationnary normal forms and cocycle invariants, Random and Computational dynamics, Tome 1 (1992), pp. 229-259 | MR 1186375 | Zbl 0778.58058
[20] On normal forms in hamiltonian dynamics, a new approach to some convergence questions, Ergod. Th. and Dynam. Sys., Tome 15 (1995), pp. 49-66 | Article | MR 1314968 | Zbl 0820.58052
[21] Spectral Asymptotics in the Semi-Classical Limit, Cambridge University Press, London Mathematical Society Lecture Notes, Tome 268 (1999) | MR 1735654 | Zbl 0926.35002
[22] Approach to ergodicity in quantum wave functions, Phys. Rev. E, Tome 52 (1995), pp. 5893-5903 | Article
[23] Lectures on semiclassical analysis (2003) (http://math.berkeley.edu/ zworski/)
[24] Semiclassical formula beyond the ehrenfest time in quantum chaos. (II) propagator formula (2006) (in preparation)
[25] Prequantum chaos: Resonances of the prequantum cat map, Journal of Modern Dynamics, Tome 1 (2007) no. 2, pp. 255-285 | Article | MR 2285729 | Zbl pre05238950
[26] On the maximal scarring for quantum cat map eigenstates, Communications in Mathematical Physics, Tome 245 (2004), pp. 201-214 | Article | MR 2036373 | Zbl 1071.81044
[27] Scarred eigenstates for quantum cat maps of minimal periods, Communications in Mathematical Physics, Tome 239 (2003), pp. 449-492 | Article | MR 2000926 | Zbl 1033.81024
[28] Harmonic Analysis in phase space, Princeton University Press (1989) | MR 983366 | Zbl 0682.43001
[29] Chaos and Quantum Physics, North-Holland, Les Houches Session LII 1989 (1991) | MR 1188415
[30] Traces and Determinants of Linear Operators, Birkhauser (2000) | MR 1744872 | Zbl 0946.47013
[31] The symbol of a function of a pseudo-differential operator., Annales de l’Institut Fourier, Tome 55 (2005) no. 7, pp. 2257-2284 | Article | Numdam | Zbl 1091.53062
[32] Wave-trace invariants, Duke Math. J., Tome 83 (1996) no. 2, pp. 287-352 | Article | MR 1390650 | Zbl 0858.58051
[33] Periodic orbits and classical quantization conditions, J. Math. Phys., Tome 12 (1971), pp. 343-358 | Article
[34] Chaos in classical and quantum mechanics, Springer-Verlag (1991) | MR 1077246 | Zbl 0727.70029
[35] Quantum Signatures of Chaos, Springer (2001) | MR 1806548 | Zbl 0985.81038
[36] Exponentially acurrate semiclassical dynamics: Propagation, localization, ehrenfest times, scattering, and more general states, Ann. Henri Poincaré, Tome 1 (2000), pp. 837-883 | Article | MR 1806980 | Zbl 1050.81017
[37] Hyperbolic dynamics, Handbook of Dynamical Systems, North Holland, Tome 1A (2002), pp. 239-320 | Article | MR 1928520 | Zbl 1047.37018
[38] Time dependant approach to semiclassical dynamics, J. Chem. Phys., Tome 62 (1975), pp. 1544-1555 | Article
[39] The classical limit of quantum mechanical correlation funtions, Comm. Math. Phys., Tome 35 (1974), pp. 265-277 | Article | MR 332046
[40] Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math., Inst. Hautes Étud. Sci., Tome 72 (1990), pp. 5-61 | Article | Numdam | MR 1087392 | Zbl 0725.58034
[41] The Birkhoff normal form for a Fourier integral operator. (La forme normale de Birkhoff pour un opérateur intégral de Fourier.), Asymptotic Anal., Tome 17 (1998) no. 1, pp. 71-92 | MR 1632700 | Zbl 01355380
[42] Birkhoff normal forms for Fourier integral operators. II, Am. J. Math., Tome 124 (2002) no. 4, pp. 817-850 | Article | MR 1914459 | Zbl 1011.35144
[43] Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett., Tome 9 (2002) no. 2-3, pp. 337-362 | MR 1909649 | Zbl 01804060
[44] Semiclassical dynamics with exponentially small error estimates, Comm. in Math. Phys., Tome 207 (1999), pp. 439-465 | Article | MR 1724830 | Zbl 1031.81519
[45] Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1995) | MR 1326374 | Zbl 0878.58020
[46] Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity, Tome 4 (1991), pp. 277-307 | Article | MR 1107008 | Zbl 0726.58036
[47] The cat maps: quantum mechanics and classical motion, Nonlinearity, Tome 4 (1991), pp. 309-341 | Article | MR 1107009 | Zbl 0726.58037
[48] The semiclassical evolution of wave-packets, Phys. Rep., Tome 138 (1986) no. 4–5, pp. 193-291 | Article | MR 845963
[49] An Introduction to Semiclassical and Microlocal Analysis, Springer, New York, Universitext (2002) | MR 1872698 | Zbl 0994.35003
[50] Evolution of lagrangian states through pertubated cat maps, Preprint (2004)
[51] Generalized coherent states and their applications, Springer-Verlag (1986) | MR 858831 | Zbl 0605.22013
[52] Dynamical Systems and Ergodic theory, Cambridge University Press (1998) | MR 1627681 | Zbl 0897.28009
[53] Semi-classical behaviour of expectation values in time evolved lagrangian states for large times, Commun. Math. Phys., Tome 256 (2005), pp. 239-254 | Article | MR 2134343 | Zbl 1067.81040
[54] Resonances associated to a closed hyperbolic trajectory in dimension 2, Asymptotic Anal., Tome 36 (2003) no. 2, pp. 93-113 | MR 2021528 | Zbl 1060.35096
[55] Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl., Tome 1 (2002), pp. 1-33 | MR 1994881 | Zbl 1038.58033
[56] Long-time semi-classical dynamics of chaos: the stadium billard, Physical Review E, Tome 47 (1993), pp. 282 | Article | MR 1375006
[57] Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Rev. Mod. Phys., Tome 55 (1987), pp. 919-941 | MR 916129 | Zbl 0643.58029
[58] Quantum dynamics from the semi-classical viewpoint, Lectures at I.H.P. (1996) (http://mathnt.mat.jhu.edu/zelditch)
[59] Wave invariants at elliptic closed geodesics, Geom. Funct. Anal., Tome 7 (1997) no. 1, pp. 145-213 | Article | MR 1437476 | Zbl 0876.58010
[60] Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal., Tome 8 (1998) no. 1, pp. 179-217 | Article | MR 1601862 | Zbl 0908.58022
[61] Quantum ergodicity and mixing of eigenfunctions, Elsevier Encyclopedia of Math. Phys (2005)
[62] Coherent states: theory and some applications, Rev. Mod. Phys., Tome 62 (1990), pp. 867 | Article | MR 1102385