Nous étudions la limite de haute énergie pour les fonctions propres du laplacien, sur une variété riemannienne compacte dont le flot géodésique est d’Anosov. La localisation d’une mesure semiclassique associée à une suite de fonctions propres peut être mesurée par son entropie de Kolmogorov-Sinai. Nous obtenons pour cette entropie une borne inférieure qui, dans le cas des variétés à courbure négative constante, vaut la moitié de l’entropie maximale. En ce sens, on peut dire que les fonctions propres de haute énergie sont au moins à demi délocalisées.
We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized.
@article{AIF_2007__57_7_2465_0, author = {Anantharaman, Nalini and Nonnenmacher, St\'ephane}, title = {Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {2465-2523}, doi = {10.5802/aif.2340}, zbl = {1145.81033}, mrnumber = {2394549}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_7_2465_0} }
Anantharaman, Nalini; Nonnenmacher, Stéphane. Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2465-2523. doi : 10.5802/aif.2340. http://gdmltest.u-ga.fr/item/AIF_2007__57_7_2465_0/
[1] Entropy of eigenfunctions (2006) (to appear in the Proceedings of the International Congress on Mathematical Physics - Rio de Janeiro, August 6 - 11) | Zbl 1175.81118
[2] Entropy and the localization of eigenfunctions (2008) (to appear in Ann. of Math.) | Zbl 1175.35036
[3] Entropy of semiclassical measures of the Walsh-quantized baker’s map, Ann. Henri Poincaré, Tome 8 (2007) no. 1, pp. 37-74 | Article | Zbl 1109.81035
[4] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Tome 155 (1977) no. 3, pp. 249-276 | Article | MR 455055 | Zbl 0341.35052
[5] Regular and irregular semiclassical wavefunctions, J. Phys. A, Tome 10 (1977) no. 12, pp. 2083-2091 | Article | MR 489542 | Zbl 0377.70014
[6] Random matrix theories and chaotic dynamics, Chaos et physique quantique (Les Houches, 1989), North-Holland, Amsterdam (1991), pp. 87-199 | MR 1188418
[7] Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Tome 111 (2002) no. 2, pp. 223-252 | Article | MR 1882134 | Zbl 1069.35061
[8] Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., Tome 102 (1985) no. 3, pp. 497-502 | Article | MR 818831 | Zbl 0592.58050
[9] Équilibre instable en régime semi-classique. I. Concentration microlocale, Comm. Partial Differential Equations, Tome 19 (1994) no. 9-10, pp. 1535-1563 | Article | MR 1294470 | Zbl 0819.35116
[10] Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 268 (1999) | MR 1735654 | Zbl 0926.35002
[11] Quantum unique ergodicity, Proc. Amer. Math. Soc., Tome 131 (2003) no. 9, p. 2945-2951 (electronic) | Article | MR 1974353 | Zbl 1027.58024
[12] Linear operators. I. General theory, Interscience Publishers, Inc., New York, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7 (1958) | MR 117523 | Zbl 0084.10402
[13] Lectures on semiclassical analysis ((version 0.2), http://math.berkeley.edu/~zworski)
[14] On the maximal scarring for quantum cat map eigenstates, Comm. Math. Phys., Tome 245 (2004) no. 1, pp. 201-214 | Article | MR 2036373 | Zbl 1071.81044
[15] Scarred eigenstates for quantum cat maps of minimal periods, Comm. Math. Phys., Tome 239 (2003) no. 3, pp. 449-492 | Article | MR 2000926 | Zbl 1033.81024
[16] Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris (1932) | Zbl 0006.20501
[17] The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 256 (1983) (Distribution theory and Fourier analysis) | Zbl 0521.35001
[18] Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, Tome 54 (1995) (With a supplementary chapter by Katok and Leonardo Mendoza) | MR 1326374 | Zbl 0878.58020
[19] Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus (to appear in Ann. of Math., math-ph/0510079)
[20] Scarring on invariant manifolds for perturbed quantized hyperbolic toral automorphisms (preprint, arXiv:math-ph/0607033)
[21] Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2), Tome 99 (1974), pp. 1-13 | Article | MR 377980 | Zbl 0272.53025
[22] Complementary observables and uncertainty relations, Phys. Rev. D (3), Tome 35 (1987) no. 10, pp. 3070-3075 | Article | MR 897714
[23] The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2), Tome 122 (1985) no. 3, pp. 509-539 | Article | Zbl 0605.58028
[24] Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2), Tome 163 (2006) no. 1, pp. 165-219 | Article | MR 2195133 | Zbl 1104.22015
[25] Generalized entropic uncertainty relations, Phys. Rev. Lett., Tome 60 (1988) no. 12, pp. 1103-1106 | Article | MR 932170
[26] Quantum decay rates in chaotic scattering (2007) (preprint, arXiv:0706.3242)
[27] The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys., Tome 161 (1994) no. 1, pp. 195-213 | Article | MR 1266075 | Zbl 0836.58043
[28] Asymptotic distribution of resonances for convex obstacles, Acta Math., Tome 183 (1999) no. 2, pp. 191-253 | Article | MR 1738044 | Zbl 0989.35099
[29] Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, Tome 29 (1974) no. 6(180), p. 181-182 | MR 402834
[30] Semiclassical ergodicity of quantum eigenstates in the Wigner representation, Stochastic behavior in classical and quantum Hamiltonian systems (Volta Memorial Conf., Como, 1977), Springer, Berlin (Lecture Notes in Phys.) Tome 93 (1979), pp. 326-333 | MR 550907 | Zbl 0404.70012
[31] The modulus of continuity for semi-classical limits, Comm. Math. Phys., Tome 216 (2001) no. 2, pp. 313-323 | Article | MR 1814849 | Zbl 1007.11028
[32] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Tome 55 (1987) no. 4, pp. 919-941 | Article | MR 916129 | Zbl 0643.58029