La torsion analytique raffinée, associée à un fibré vectoriel plat sur une variété fermée et orientée de dimension impaire, définit d’une manière canonique une forme quadratique sur le déterminant de la cohomologie. La torsion introduite par Burghelea et Haller et la forme quadratique sont des concepts raffinés de la torsion analytique de Ray-Singer. On démontre que dans le cas où la torsion de Burghelea-Haller est définie, elle est identique à . Comme application, on obtient des résultats nouveaux pour la torsion de Burghelea-Haller. En particulier, on démontre une version faible de la conjecture de Burghelea-Haller concernant leur torsion et le carré de la torsion combinatoire de Farber-Turaev.
The refined analytic torsion associated to a flat vector bundle over a closed odd-dimensional manifold canonically defines a quadratic form on the determinant line of the cohomology. Both and the Burghelea-Haller torsion are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-Haller torsion is defined it is equal to . As an application we obtain new results about the Burghelea-Haller torsion. In particular, we prove a weak version of the Burghelea-Haller conjecture relating their torsion with the square of the Farber-Turaev combinatorial torsion.
@article{AIF_2007__57_7_2361_0, author = {Braverman, Maxim and Kappeler, Thomas}, title = {Comparison of the refined analytic and the Burghelea-Haller torsions}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {2361-2387}, doi = {10.5802/aif.2336}, zbl = {1147.58033}, mrnumber = {2394545}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_7_2361_0} }
Braverman, Maxim; Kappeler, Thomas. Comparison of the refined analytic and the Burghelea-Haller torsions. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2361-2387. doi : 10.5802/aif.2336. http://gdmltest.u-ga.fr/item/AIF_2007__57_7_2361_0/
[1] Heat kernels and Dirac operators, Springer-Verlag, Berlin, Grundlehren Text Editions (2004) (Corrected reprint of the 1992 original) | MR 2273508 | Zbl 1037.58015
[2] An extension of a theorem by Cheeger and Müller, Astérisque (1992) no. 205, pp. 235 (With an appendix by François Laudenbach) | MR 1185803 | Zbl 0781.58039
[3] A canonical quadratic form on the determinant line of a flat vector bundle (arXiv:math.DG/0710.1232)
[4] Refined Analytic Torsion (arXiv:math.DG/0505537, To appear in J. of Differential Geometry)
[5] A refinement of the Ray-Singer torsion, C. R. Math. Acad. Sci. Paris, Tome 341 (2005) no. 8, pp. 497-502 | MR 2180817 | Zbl 1086.58015
[6] Ray-Singer type theorem for the refined analytic torsion, J. Funct. Anal., Tome 243 (2007) no. 1, pp. 232-256 | Article | MR 2291437 | Zbl 05129774
[7] Refined analytic torsion as an element of the determinant line, Geom. Topol., Tome 11 (2007), pp. 139-213 | Article | MR 2302591 | Zbl 05136060
[8] Removing metric anomalies from Ray-Singer torsion, Lett. Math. Phys., Tome 47 (1999) no. 2, pp. 149-158 | Article | MR 1682302 | Zbl 0946.58026
[9] Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal., Tome 137 (1996) no. 2, pp. 320-363 | Article | MR 1387514 | Zbl 0858.57029
[10] Torsion, as a function on the space of representations (arXiv:math.DG/0507587)
[11] Euler structures, the variety of representations and the Milnor-Turaev torsion, Geom. Topol., Tome 10 (2006), p. 1185-1238 (electronic) | Article | MR 2255496 | Zbl 05117940
[12] Complex-valued Ray-Singer torsion, J. Funct. Anal., Tome 248 (2007) no. 1, pp. 27-78 | Article | MR 2329682 | Zbl 1131.58020
[13] Analytic torsion and the heat equation, Ann. of Math. (2), Tome 109 (1979) no. 2, pp. 259-322 | Article | MR 528965 | Zbl 0412.58026
[14] Absolute torsion and eta-invariant, Math. Z., Tome 234 (2000) no. 2, pp. 339-349 | Article | MR 1765885 | Zbl 0955.57022
[15] Absolute torsion, Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 231 (1999), pp. 73-85 | MR 1705570 | Zbl 0934.57030
[16] Poincaré-Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math., Tome 520 (2000), pp. 195-225 | Article | MR 1748274 | Zbl 0938.57020
[17] The eta invariant and secondary characteristic classes of locally flat bundles, Algebraic and differential topology-global differential geometry, Teubner, Leipzig (Teubner-Texte Math.) Tome 70 (1984), pp. 49-87 | MR 792686 | Zbl 0584.58040
[18] Refined analytic torsion: comparison theorems and examples (arXiv:math.DG/0602231, To appear in Illinois J. Math.)
[19] -invariant and flat vector bundles II (arXiv:math.DG/0604357) | MR 2313340
[20] Superconnections, Thom classes, and equivariant differential forms, Topology, Tome 25 (1986) no. 1, pp. 85-110 | Article | MR 836726 | Zbl 0592.55015
[21] Analytic torsion and -torsion of Riemannian manifolds, Adv. in Math., Tome 28 (1978) no. 3, pp. 233-305 | Article | MR 498252 | Zbl 0395.57011
[22] Analytic torsion and -torsion for unimodular representations, J. Amer. Math. Soc., Tome 6 (1993) no. 3, pp. 721-753 | Article | MR 1189689 | Zbl 0789.58071
[23] -torsion and the Laplacian on Riemannian manifolds, Advances in Math., Tome 7 (1971), pp. 145-210 | Article | MR 295381 | Zbl 0239.58014
[24] Reidemeister torsion in knot theory, Russian Math. Survey, Tome 41 (1986), pp. 119-182 | Article | MR 832411 | Zbl 0602.57005
[25] Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Math. USSR Izvestia, Tome 34 (1990), pp. 627-662 | Article | MR 1013714 | Zbl 0692.57015
[26] Introduction to combinatorial torsions, Birkhäuser Verlag, Basel, Lectures in Mathematics ETH Zürich (2001) (Notes taken by Felix Schlenk) | MR 1809561 | Zbl 0970.57001