Il est bien connu que l’intégrale de Riemann d’une fonction d’une variable est beaucoup mieux approximée par la -ième somme de Riemann si la somme est effectuée sur le réseau . Dans cet article nous démontrons un résultat similaire en plusieurs variables pour des sommes de Riemann sur des polytopes.
It is well-known that the -th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard rate of convergence if the sum is over the lattice, . In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.
@article{AIF_2007__57_7_2183_0, author = {Guillemin, Victor and Sternberg, Shlomo}, title = {Riemann sums over polytopes}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {2183-2195}, doi = {10.5802/aif.2330}, zbl = {1143.52011}, mrnumber = {2394539}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_7_2183_0} }
Guillemin, Victor; Sternberg, Shlomo. Riemann sums over polytopes. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2183-2195. doi : 10.5802/aif.2330. http://gdmltest.u-ga.fr/item/AIF_2007__57_7_2183_0/
[1] Lattice points in simple polytopes, Jour. Amer. Math. Soc., Tome 10 (1997), pp. 371-392 | Article | MR 1415319 | Zbl 0871.52009
[2] Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Ser. I Math., Tome 321 (1995), pp. 885-890 | MR 1355847 | Zbl 0838.52018
[3] The geometry of toric varieties, Russ. Math. Surv., Tome 33 (1978) no. 2, pp. 97-154 | Article | MR 495499 | Zbl 0425.14013
[4] Riemann-Roch for toric orbifolds, J. Differential Geom., Tome 45 (1997), pp. 53-73 | MR 1443331 | Zbl 0932.37039
[5] The Ehrhart function for symbols (to appear)
[6] Some Riemann sums are better than others (to appear)
[7] Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de , C. R. Acad. Sci. Paris Ser. I Math, Tome 317 (1993) no. 5, pp. 501-507 | Zbl 0791.52012
[8] Euler-MacLaurin with remainder for a simple integral polytope, Duke Mathematical Journal, Tome 130 (2005), pp. 401-434 | Article | MR 2184566 | Zbl 1087.65002
[9] The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra and Analysis, Tome 4 (1992), pp. 188-216 (translation in St. Petersburg Math. J. (1993), no. 4, 789–812) | MR 1190788 | Zbl 0798.52010