Riemann sums over polytopes
[Sommes de Riemann sur des polytopes]
Guillemin, Victor ; Sternberg, Shlomo
Annales de l'Institut Fourier, Tome 57 (2007), p. 2183-2195 / Harvested from Numdam

Il est bien connu que l’intégrale de Riemann d’une fonction d’une variable est beaucoup mieux approximée par la N-ième somme de Riemann si la somme est effectuée sur le réseau Z/N. Dans cet article nous démontrons un résultat similaire en plusieurs variables pour des sommes de Riemann sur des polytopes.

It is well-known that the N-th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard O(1/N) rate of convergence if the sum is over the lattice, Z/N. In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.

Publié le : 2007-01-01
DOI : https://doi.org/10.5802/aif.2330
Classification:  52B20
Mots clés: sommes de Riemann, formule d’Euler-Maclaurin pour les polytopes, théorème de Ehrhart
@article{AIF_2007__57_7_2183_0,
     author = {Guillemin, Victor and Sternberg, Shlomo},
     title = {Riemann sums over polytopes},
     journal = {Annales de l'Institut Fourier},
     volume = {57},
     year = {2007},
     pages = {2183-2195},
     doi = {10.5802/aif.2330},
     zbl = {1143.52011},
     mrnumber = {2394539},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2007__57_7_2183_0}
}
Guillemin, Victor; Sternberg, Shlomo. Riemann sums over polytopes. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2183-2195. doi : 10.5802/aif.2330. http://gdmltest.u-ga.fr/item/AIF_2007__57_7_2183_0/

[1] Brion, M.; Vergne, M. Lattice points in simple polytopes, Jour. Amer. Math. Soc., Tome 10 (1997), pp. 371-392 | Article | MR 1415319 | Zbl 0871.52009

[2] Cappell, S.; Shaneson, J. Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Ser. I Math., Tome 321 (1995), pp. 885-890 | MR 1355847 | Zbl 0838.52018

[3] Danilov, V. I. The geometry of toric varieties, Russ. Math. Surv., Tome 33 (1978) no. 2, pp. 97-154 | Article | MR 495499 | Zbl 0425.14013

[4] Guillemin, V. Riemann-Roch for toric orbifolds, J. Differential Geom., Tome 45 (1997), pp. 53-73 | MR 1443331 | Zbl 0932.37039

[5] Guillemin, V.; Sternberg, Shlomo; Weitsman, Jonathan The Ehrhart function for symbols (to appear)

[6] Guillemin, V.; Stroock, D. W. Some Riemann sums are better than others (to appear)

[7] Kantor, J. M.; Khovanskii, A. G. Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de R d , C. R. Acad. Sci. Paris Ser. I Math, Tome 317 (1993) no. 5, pp. 501-507 | Zbl 0791.52012

[8] Karshon, Y.; Sternberg, S.; Weitsman, J. Euler-MacLaurin with remainder for a simple integral polytope, Duke Mathematical Journal, Tome 130 (2005), pp. 401-434 | Article | MR 2184566 | Zbl 1087.65002

[9] Khovanskii, A. G; Pukhlikov, A. V. The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra and Analysis, Tome 4 (1992), pp. 188-216 (translation in St. Petersburg Math. J. (1993), no. 4, 789–812) | MR 1190788 | Zbl 0798.52010