On total reality of meromorphic functions
[Sur la réalité totale des fonctions méromorphes]
Degtyarev, Alex ; Ekedahl, Torsten ; Itenberg, Ilia ; Shapiro, Boris ; Shapiro, Michael
Annales de l'Institut Fourier, Tome 57 (2007), p. 2015-2030 / Harvested from Numdam

On montre que, si tous les points critiques d’une fonction méromorphe de degré au plus quatre sur une courbe algébrique réelle de genre arbitraire sont réels, alors la fonction est conjugée à une fonction méromorphe réelle par un automorphisme projectif approprié de l’image.

We show that, if a meromorphic function of degree at most four on a real algebraic curve of an arbitrary genus has only real critical points, then it is conjugate to a real meromorphic function by a suitable projective automorphism of the image.

Publié le : 2007-01-01
DOI : https://doi.org/10.5802/aif.2321
Classification:  14P05,  14P25
Mots clés: réalité totale, fontion méromorphe, courbes réelles sur un ellipsoide, surface K3
@article{AIF_2007__57_6_2015_0,
     author = {Degtyarev, Alex and Ekedahl, Torsten and Itenberg, Ilia and Shapiro, Boris and Shapiro, Michael},
     title = {On total reality of meromorphic functions},
     journal = {Annales de l'Institut Fourier},
     volume = {57},
     year = {2007},
     pages = {2015-2030},
     doi = {10.5802/aif.2321},
     zbl = {1131.14059},
     mrnumber = {2377894},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2007__57_6_2015_0}
}
Degtyarev, Alex; Ekedahl, Torsten; Itenberg, Ilia; Shapiro, Boris; Shapiro, Michael. On total reality of meromorphic functions. Annales de l'Institut Fourier, Tome 57 (2007) pp. 2015-2030. doi : 10.5802/aif.2321. http://gdmltest.u-ga.fr/item/AIF_2007__57_6_2015_0/

[1] Barth, W.; Peters, C.; De Ven, A. Van Compact Complex Surfaces, Springer-Verlag (1984) | MR 749574 | Zbl 0718.14023

[2] Bourbaki, N. Éléments de mathématique. Fasc. XXXIV, Groupes et algèbres de Lie, Hermann, Paris (Actualités Scientifiques et Industrielles) Tome 1337 (1968) (Chap. 4-6) | MR 240238 | Zbl 0186.33001

[3] Ekedahl, T.; Shapiro, B.; Shapiro, M. First steps towards total reality of meromorphic functions (submitted to Moscow Mathematical Journal) | Zbl 1126.14064

[4] Eremenko, A.; Gabrielov, A. Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math.(2), Tome 155 (2002) no. 1, pp. 105-129 | Article | MR 1888795 | Zbl 0997.14015

[5] Eremenko, A.; Gabrielov, A.; Shapiro, M.; Vainshtein, A. Rational functions and real Schubert calculus (math.AG/0407408) | Zbl 1110.14052

[6] Gudkov, D.; Shustin, E. Classification of nonsingular eighth-order curves on an ellipsoid. (Russian), Methods of the qualitative theory of differential equations (1980), pp. 104-107 (Gor’kov. Gos. Univ., Gorki.) | MR 726230

[7] Kharlamov, V.; Sottile, F. Maximally inflected real rational curves, Mosc. Math. J. 3 (2003) no. 3, p. 947-987, 1199–1200 | MR 2078569 | Zbl 1052.14070

[8] Mukhin, E.; Tarasov, V.; Varchenko, A. The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz (preprint math.AG/0512299)

[9] Nikulin, V. V. Integer quadratic forms and some of their geometrical applications, Izv. Akad. Nauk SSSR, Ser. Mat, Tome 43 (1979) no. 1, pp. 111-177 (English transl. in Math. USSR–Izv. vol 43 (1979), 103–167) | MR 525944 | Zbl 0408.10011

[10] Osserman, B. Linear series over real and p-adic fields, Proc. AMS, Tome 134 (2005) no. 4, pp. 989-993 | Article | MR 2196029 | Zbl 1083.14034

[11] Ruffo, J.; Sivan, Y.; Soprunova, E.; Sottile, F. Experimentation and conjectures in the real Schubert calculus for flag manifolds (Preprint (2005), math.AG/0507377) | Zbl 1111.14049

[12] Sottile, F. (website - www.expmath.org/extra/9.2/sottile)

[13] Sottile, F. Enumerative geometry for real varieties, Proc. of Symp. Pur. Math., Tome 62 (1997) no. 1, pp. 435-447 | MR 1492531 | Zbl 0890.14030

[14] Sottile, F. Enumerative geometry for the real Grassmannian of lines in projective space, Duke Math J., Tome 87 (1997), pp. 59-85 | Article | MR 1440063 | Zbl 0986.14033

[15] Sottile, F. The special Schubert calculus is real, Electronic Res. Ann. of the AMS, Tome 5 (1999) no. 1, pp. 35-39 | MR 1679451 | Zbl 0921.14037

[16] Sottile, F. Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro, Experiment. Math., Tome 9 (2000) no. 2, pp. 161-182 | MR 1780204 | Zbl 0997.14016

[17] Verschelde, J. Numerical evidence for a conjecture in real algebraic geometry, Experiment. Math., Tome 9 (2000) no. 2, pp. 183-196 | MR 1780205 | Zbl 1054.14080

[18] Walker, R. J.; Press, Princeton University Algebraic Curves, Princeton, N. J. (Princeton Mathematical Series) Tome 13 (1950), pp. x+201 | MR 33083 | Zbl 0039.37701