Contraction of excess fibres between the McKay correspondences in dimensions two and three
[Contraction de fibres excédentaires entre les correspondances de McKay en dimensions deux et trois]
Boissière, Samuel ; Sarti, Alessandra
Annales de l'Institut Fourier, Tome 57 (2007), p. 1839-1861 / Harvested from Numdam

Les singularités quotients de dimensions deux et trois obtenues par des groupes polyédraux et les groupes polyédraux binaires correspondants admettent des résolutions de singularités naturelles par les schémas de Hilbert d’orbites régulières, dont les fibres exceptionnelles au-dessus de l’origine révèlent des propriétés similaires. Nous construisons un morphisme entre ces deux résolutions, contractant exactement la partie excédentaire de la fibre exceptionnelle. Cette construction est motivée par l’étude de certains pinceaux de surfaces K3 apparaissant comme résolutions minimales de quotients de surfaces nodales à grandes symétries.

The quotient singularities of dimensions two and three obtained from polyhedral groups and the corresponding binary polyhedral groups admit natural resolutions of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the origin reveal similar properties. We construct a morphism between these two resolutions, contracting exactly the excess part of the exceptional fibre. This construction is motivated by the study of some pencils of K3 surfaces appearing as minimal resolutions of quotients of nodal surfaces with high symmetries.

Publié le : 2007-01-01
DOI : https://doi.org/10.5802/aif.2315
Classification:  14C05,  14E15,  20C15,  51F15
Mots clés: singularités quotients, correspondance de McKay, schémas de Hilbert, groupes polyédraux
@article{AIF_2007__57_6_1839_0,
     author = {Boissi\`ere, Samuel and Sarti, Alessandra},
     title = {Contraction of excess fibres between the McKay correspondences in dimensions two and three},
     journal = {Annales de l'Institut Fourier},
     volume = {57},
     year = {2007},
     pages = {1839-1861},
     doi = {10.5802/aif.2315},
     zbl = {1133.14004},
     mrnumber = {2377888},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2007__57_6_1839_0}
}
Boissière, Samuel; Sarti, Alessandra. Contraction of excess fibres between the McKay correspondences in dimensions two and three. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1839-1861. doi : 10.5802/aif.2315. http://gdmltest.u-ga.fr/item/AIF_2007__57_6_1839_0/

[1] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra, Addison-Wesley (1969) | MR 242802 | Zbl 0175.03601

[2] Barth, W. P.; Sarti, A. Polyhedral Groups and Pencils of K3-Surfaces with Maximal Picard Number, Asian J. of Math., Tome 7 (2003) no. 4, pp. 519-538 | MR 2074889 | Zbl 1063.14047

[3] Bridgeland, T.; King, A.; Reid, M. The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., Tome 14 (2001) no. 3, pp. 535-554 | Article | MR 1824990 | Zbl 0966.14028

[4] Crawley-Boevey, W. On the exceptional fibres of Kleinian singularities, Amer. J. Math., Tome 122 (2000), pp. 1027-1037 | Article | MR 1781930 | Zbl 1001.14001

[5] Fogarty, J. Algebraic families on an algebraic surface, Amer. J. Math., Tome 90 (1968), pp. 511-521 | Article | MR 237496 | Zbl 0176.18401

[6] Gomi, Y.; Nakamura, I.; Shinoda, K.-I. Hilbert schemes of G-orbits in dimension three, Asian J. Math., Tome 4 (2000), pp. 51-70 | MR 1802912 | Zbl 0981.14002

[7] Gomi, Y.; Nakamura, I.; Shinoda, K.-I. Coinvariant algebras of finite subgroups of SL(3,), Can. J. Math., Tome 56 (2002), pp. 495-528 | Article | MR 2057284 | Zbl 1066.14053

[8] Gonzalez-Sprinberg, G.; Verdier, J.-L. Construction géométrique de la correspondance de McKay, Ann. scient. Éc. Norm. Sup., Tome 16 (1983), pp. 409-449 | Numdam | MR 740077 | Zbl 0538.14033

[9] Hartshorne, R. Algebraic geometry, Springer (1977) | MR 463157 | Zbl 0367.14001

[10] Huybrechts, D.; Lehn, M. The geometry of moduli spaces of sheaves, Vieweg (1997) | MR 1450870 | Zbl 0872.14002

[11] Ito, Y.; Nakajima, H. McKay correspondence and Hilbert schemes in dimension 3, Topology, Tome 39 (2000), pp. 1155-1191 | Article | MR 1783852 | Zbl 0995.14001

[12] Ito, Y.; Nakamura, I. McKay correspondence and Hilbert schemes, Proc. Japan. Acad., Tome 92 (1996), pp. 135-138 | MR 1420598 | Zbl 0881.14002

[13] Ito, Y.; Nakamura, I. Hilbert schemes and simple singularities, New trends in algebraic geometry, Camb. Univ. Press, July 1996 Warwick European alg. geom. conf. (1999), pp. 151-233 | MR 1714824 | Zbl 0954.14001

[14] Kapranov, M.; Vasserot, E. Kleinian singularities, derived categories and Hall algebras, Math. Ann., Tome 316 (2000), pp. 565-576 | Article | MR 1752785 | Zbl 0997.14001

[15] Mckay, J. Graphs, singularities and finite groups, Proc. of Symp. in Pure Math., Tome 37 (1980), pp. 183-186 | MR 604577 | Zbl 0451.05026

[16] Nakamura, I. Hilbert scheme of abelian group orbits, J. Alg. Geom., Tome 10 (2001), pp. 757-779 | MR 1838978 | Zbl 1104.14003

[17] Sarti, A. Pencils of Symmetric Surfaces in 3 , J. of Algebra, Tome 246 (2001), pp. 429-452 | Article | MR 1872630 | Zbl 1064.14038

[18] Térouanne, S. Correspondance de McKay : variations en dimension trois, Université Joseph Fourier de Grenoble (2004) (Ph. D. Thesis)