Soit une solution à l’infini d’une équation différentielle algébrique d’ordre , . Nous donnons un critère géométrique pour que les germes à l’infini de et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.
Let be a solution of an algebraic differential equation of order , . We establish a geometric criterion so that the germs at infinity of and the identity function on belong to a common Hardy field. This criterion is based on the concept of non oscillation.
@article{AIF_2007__57_6_1825_0, author = {Blais, Fran\c cois and Moussu, Robert and Sanz, Fernando}, title = {Solutions non oscillantes d'une \'equation diff\'erentielle et corps de Hardy}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {1825-1838}, doi = {10.5802/aif.2314}, zbl = {1133.34007}, mrnumber = {2377887}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_6_1825_0} }
Blais, François; Moussu, Robert; Sanz, Fernando. Solutions non oscillantes d’une équation différentielle et corps de Hardy. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1825-1838. doi : 10.5802/aif.2314. http://gdmltest.u-ga.fr/item/AIF_2007__57_6_1825_0/
[1] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, “Mir”, Moscow (1984) (Translated from the Russian by Djilali Embarek, Reprint of the 1980 edition) | Zbl 0956.34502
[2] Real algebraic and semi-algebraic sets, Hermann, Paris, Actualités Mathématiques. [Current Mathematical Topics] (1990) | MR 1070358 | Zbl 0694.14006
[3] Géométrie algébrique réelle, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 12 (1987) | MR 949442 | Zbl 0633.14016
[4] An extension of Hardy’s class of “orders of infinity”, J. Analyse Math., Tome 39 (1981), pp. 235-255 | Article | Zbl 0539.26002
[5] Second order differential equations over Hardy fields, J. London Math. Soc. (2), Tome 35 (1987) no. 1, pp. 109-120 | Article | MR 871769 | Zbl 0616.26002
[6] Oscillation, spiralement, tourbillonnement, Comment. Math. Helv., Tome 75 (2000) no. 2, pp. 284-318 | Article | MR 1774707 | Zbl 0971.58025
[7] Nonoscillating projections for trajectories of vector fields, Journal of Dynamical and Control Systems, Tome 13 (2007) no. 2, pp. 173-176 | Article | MR 2317453 | Zbl 1130.34313
[8] Tame topology and o-minimal structures, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 248 (1998) | MR 1633348 | Zbl 0953.03045
[9] Solving ordinary differential equations in terms of series with real exponents, Trans. Amer. Math. Soc., Tome 327 (1991) no. 1, pp. 329-351 | Article | MR 1012519 | Zbl 0758.12004
[10] Properties of logarithmico-exponential functions, Proc. London Math. Soc.,, Tome 10 (1912) no. 2, pp. 54-90 | Article
[11] Some results concerning the behaviour at infinity of a real and continuous solution of an algebraic differential equation of the first order, Proc. London Math. Soc.,, Tome 10 (1912), pp. 451-469 | Article
[12] Fewnomials, American Mathematical Society, Providence, RI, Translations of Mathematical Monographs, Tome 88 (1991) (Translated from the Russian by Smilka Zdravkovska) | MR 1108621 | Zbl 0728.12002
[13] Differential equations over polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., Tome 131 (2003) no. 1, p. 175-183 (electronic) | Article | MR 1929037 | Zbl 1007.03039
[14] Théorie de Hovanskiĭ et problème de Dulac, Invent. Math., Tome 105 (1991) no. 2, pp. 431-441 | Article | MR 1115550 | Zbl 0769.58050
[15] Trajectories of polynomial vector fields and ascending chains of polynomial ideals, Ann. Inst. Fourier (Grenoble), Tome 49 (1999) no. 2, pp. 563-609 | Article | Numdam | MR 1697373 | Zbl 0947.37008
[16] Über Differentialgliechungen erster Ordnung, die nicht nach der Ableitung aufgelöst sind, Jahresbericht der Deutschen Mathematiker-Vereinigung, Tome 22 (1912), pp. 356-368
[17] Hardy fields, J. Math. Anal. Appl., Tome 93 (1983) no. 2, pp. 297-311 | Article | MR 700146 | Zbl 0518.12014
[18] Growth properties of functions in Hardy fields, Trans. Amer. Math. Soc., Tome 299 (1987) no. 1, pp. 261-272 | Article | MR 869411 | Zbl 0619.34057
[19] Asymptotic solutions of , J. Math. Anal. Appl., Tome 189 (1995) no. 3, pp. 640-650 | Article | MR 1312544 | Zbl 0824.34068
[20] Erratum : “Growth orders occurring in expansions of Hardy-field solutions of algebraic differential equations” [Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 183–221 ; MR1324130 (96f :34073)], Ann. Inst. Fourier (Grenoble), Tome 45 (1995) no. 5, pp. 1471
[21] Équations Fonctionnelles. Applications, Masson et Cie, Paris (1945) | MR 14520 | Zbl 0061.16607