A.e. convergence of spectral sums on Lie groups
[Convergence p.p. de sommes spectrales sur les groupes de Lie]
Meaney, Christopher ; Müller, Detlef ; Prestini, Elena
Annales de l'Institut Fourier, Tome 57 (2007), p. 1509-1520 / Harvested from Numdam

Soit un sous-Laplacien invariant à droite sur un groupe de Lie G, et soit S R f:= 0 R dE λ f,R0, l’opérateur “sommes sphériques partielles” associé, où = 0 λdE λ dénote la résolution spectrale de . Nous prouvons que S R f(x) converge vers f(x) p.p. quand R, si log(2+)fL 2 (G).

Let be a right-invariant sub-Laplacian on a connected Lie group G, and let S R f:= 0 R dE λ f,R0, denote the associated “spherical partial sums,” where = 0 λdE λ is the spectral resolution of . We prove that S R f(x) converges a.e. to f(x) as R under the assumption log(2+)fL 2 (G).

Publié le : 2007-01-01
DOI : https://doi.org/10.5802/aif.2303
Classification:  22E30,  43A50
Mots clés: théorème de Rademacher-Menchov, sous-Laplacien, théorie spectrale
@article{AIF_2007__57_5_1509_0,
     author = {Meaney, Christopher and M\"uller, Detlef and Prestini, Elena},
     title = {A.e. convergence of spectral sums on Lie groups},
     journal = {Annales de l'Institut Fourier},
     volume = {57},
     year = {2007},
     pages = {1509-1520},
     doi = {10.5802/aif.2303},
     zbl = {1131.22007},
     mrnumber = {2364139},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2007__57_5_1509_0}
}
Meaney, Christopher; Müller, Detlef; Prestini, Elena. A.e. convergence of spectral sums on Lie groups. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1509-1520. doi : 10.5802/aif.2303. http://gdmltest.u-ga.fr/item/AIF_2007__57_5_1509_0/

[1] Alexits, G. Convergence Problems of Orthogonal Series., Pergamon Press, Oxford, New York, International Series of Monographs in Pure and Applied Mathematics, Tome 20 (1961) (Translated from the German by I. Földer) | MR 218827 | Zbl 0098.27403

[2] Carbery, A.; Soria, F. Almost-Everywhere Convergence of Fourier Integrals for Functions in Sobolev Spaces, and an L 2 -Localisation Principle, Rev. Mat. Iberoamericana, Tome 4 (1988) no. 2, pp. 319-337 | MR 1028744 | Zbl 0692.42001

[3] Christ, M. L p bounds for spectral multipliers on nilpotent groups., Trans. Amer. Math. Soc., Tome 328 (1991) no. 1, pp. 73-81 | Article | MR 1104196 | Zbl 0739.42010

[4] Colzani, L.; Meaney, C.; Prestini, E. Almost everywhere convergence of inverse Fourier transforms., Proc. Amer. Math. Soc., Tome 134 (2006) no. 6, pp. 1651-1660 | Article | MR 2204276 | Zbl 1082.42006

[5] Folland, G. B.; Stein, E. M. Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, N.J., Mathematical Notes, Tome 28 (1982) | MR 657581 | Zbl 0508.42025

[6] Hulanicki, A.; Jenkins, J. W. Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc., Tome 278 (1983) no. 2, pp. 703-715 | Article | MR 701519 | Zbl 0516.43010

[7] Ludwig, J.; Müller, D. Sub-Laplacians of holomorphic L p -type on rank one AN-groups and related solvable groups, J. Funct. Anal., Tome 170 (2000) no. 2, pp. 366-427 | Article | MR 1740657 | Zbl 0957.22013

[8] Varopoulos, N. Th.; Saloff-Coste, L.; Coulhon, T. Analysis and Geometry on Groups, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 100 (1992) | MR 1218884 | Zbl 0813.22003

[9] Zygmund, A. Trigonometric Series, Cambridge Mathematical Library. Cambridge University Press, Cambridge Tome 1 and 2 (2002) (With a foreword by Robert A. Fefferman) | MR 1963498 | Zbl 1084.42003