Dans cet article nous montrons un théorème de point fixe o-minimal pour les applications définissables continues sur les ensembles définissables et définissablement compacts, qui généralise la version de Brumfiel du théorème de point fixe de Hopf pour les applications semi-algébriques.
Here we prove an o-minimal fixed point theorem for definable continuous maps on definably compact definable sets, generalizing Brumfiel’s version of the Hopf fixed point theorem for semi-algebraic maps.
@article{AIF_2007__57_5_1441_0, author = {Edmundo, M\'ario J.}, title = {A fixed point theorem in o-minimal structures}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {1441-1450}, doi = {10.5802/aif.2300}, zbl = {1127.03034}, mrnumber = {2364135}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_5_1441_0} }
Edmundo, Mário J. A fixed point theorem in o-minimal structures. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1441-1450. doi : 10.5802/aif.2300. http://gdmltest.u-ga.fr/item/AIF_2007__57_5_1441_0/
[1] Transfer methods for o-minimal topology, J. Symbolic Logic, Tome 68 (2003), pp. 785-794 | Article | MR 2000077 | Zbl 1060.03059
[2] Real algebraic geometry, Springer-Verlag (1998) | MR 1659509 | Zbl 0912.14023
[3] A Hopf fixed point theorem for semi-algebraic maps, Springer Verlag, Berlin, Lecture Notes in Math. 1524 (1992) (Real algebraic geometry (Rennes, 1991)) | MR 1226249 | Zbl 0791.55003
[4] An introduction to o-minimal geometry (Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000). Available in RAAG preprint server 2000, http://ihp-raag.org/)
[5] On the homology of algebraic varieties over real closed fields, J. reine u.angew. Math., Tome 335 (1982), pp. 122-163 | Article | MR 667464 | Zbl 0484.14006
[6] Lectures on algebraic topology, Springer Verlag (1995) | MR 1335915 | Zbl 0872.55001
[7] Tame topology and o-minimal structures, Cambridge University Press (1998) | MR 1633348 | Zbl 0953.03045
[8] Definably compact abelian groups, J. Math. Logic, Tome 4 (2004), pp. 163-180 | Article | MR 2114966 | Zbl 1070.03025
[9] Definable compacteness and definable subgroups of o-minimal groups, J. London Math. Soc., Tome 59 (1999), pp. 769-786 | Article | MR 1709079 | Zbl 0935.03047
[10] An introduction to algebraic topology, Springer Verlag (1988) | MR 957919 | Zbl 0661.55001
[11] O-minimal homology, University of Illinois at Urbana-Champaign (1996) (Ph. D. Thesis)