Le produit d’une fonction à oscillation moyenne bornée avec une fonction de l’espace de Hardy n’est pas intégrable en général. Nous montrons toutefois qu’on peut lui donner un sens en tant que distribution tempérée, ceci grâce à la dualité , . Cette distribution peut de plus s’écrire comme la somme d’une fonction intégrable et d’une distribution appartenant à un espace de Hardy-Orlicz adapté. Lorsqu’on considère un tel produit pour les fonctions holomorphes du disque unité, cet énoncé possède une réciproque : toute fonction holomorphe de l’espace de Hardy-Orlicz considéré peut s’écrire comme un tel produit.
The point-wise product of a function of bounded mean oscillation with a function of the Hardy space is not locally integrable in general. However, in view of the duality between and , we are able to give a meaning to the product as a Schwartz distribution. Moreover, this distribution can be written as the sum of an integrable function and a distribution in some adapted Hardy-Orlicz space. When dealing with holomorphic functions in the unit disc, the converse is also valid: every holomorphic of the corresponding Hardy-Orlicz space can be written as a product of a function in the holomorphic Hardy space and a holomorphic function with boundary values of bounded mean oscillation.
@article{AIF_2007__57_5_1405_0, author = {Bonami, Aline and Iwaniec, Tadeusz and Jones, Peter and Zinsmeister, Michel}, title = {On the Product of Functions in BMO and H$^\text{1}$}, journal = {Annales de l'Institut Fourier}, volume = {57}, year = {2007}, pages = {1405-1439}, doi = {10.5802/aif.2299}, zbl = {1132.42010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2007__57_5_1405_0} }
Bonami, Aline; Iwaniec, Tadeusz; Jones, Peter; Zinsmeister, Michel. On the Product of Functions in BMO and H$^\text{1}$. Annales de l'Institut Fourier, Tome 57 (2007) pp. 1405-1439. doi : 10.5802/aif.2299. http://gdmltest.u-ga.fr/item/AIF_2007__57_5_1405_0/
[1] Mappings of -bounded distortion, Math. Ann., Tome 317 (2000), pp. 703-726 | Article | MR 1777116 | Zbl 0954.30009
[2] Teichmüller spaces and BMOA, Math. Ann., Tome 289 (1991), pp. 613-625 | Article | MR 1103039 | Zbl 0896.30028
[3] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Tome 63 (1977), pp. 703-726 | MR 475169 | Zbl 0368.73040
[4] Remarks on Chacon’s Biting Lemma, Proc. Amer. Math. Soc., Tome 107 (1989), pp. 655-663 | Zbl 0678.46023
[5] Lower semicontinuity of multiple integrals and the biting lemma, Proc. Royal Soc. Edinburgh. Sec. A, Tome 114 (1990), pp. 367-379 | Article | MR 1055554 | Zbl 0716.49011
[6] Balayage of Carleson measures and Hankel operators on generalized Hardy spaces, Math. Nachr., Tome 193 (1991), pp. 237-245 | Article | MR 1131946 | Zbl 0797.31011
[7] Continuity and compactness of measures, Advances Math., Tome 107 (1980), pp. 16-26 | Article | MR 585896 | Zbl 0463.28003
[8] A lemma in on a domain, Birkhäuser, Boston, Progr. Math., Tome 238 (2005) | MR 2174309
[9] -theory on a smooth domain in and elliptic boundary value problems, J. Funct. Anal., Tome 114 (1993), pp. 286-347 | Article | MR 1223705 | Zbl 0804.35027
[10] Compensated compactness and Hardy spaces, J. Math. Pures Appl., Tome 72 (1993), pp. 247-286 | MR 1225511 | Zbl 0864.42009
[11] Another characterization of , Proc. Amer. Math. Soc., Tome 79 (1980), pp. 249-254 | Article | MR 565349 | Zbl 0432.42016
[12] Factorization theorems for Hardy spaces in several variables, Ann. of Math., Tome 103 (1976), pp. 611-635 | Article | MR 412721 | Zbl 0326.32011
[13] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Tome 83 (1977), pp. 569-645 | Article | MR 447954 | Zbl 0358.30023
[14] Local and weak convergence in , Canad. Math. Bull., Tome 45 (2002), pp. 46-59 | Article | MR 1884133 | Zbl 1004.42020
[15] Nonhomogeneous lemmas and local Hardy spaces, Adv. Differential Equations, Tome 10 (2005), pp. 505-526 | MR 2134048 | Zbl 05056158
[16] Weak Convergence Methods for Nonlinear Partial Differential Equations, American Mathematical Society, Providence, CBMS Regional Conference Series in Mathematics, Tome 74 (1990) | MR 1034481 | Zbl 0698.35004
[17] Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, Journ. Amer. Math. Soc., Tome 7 (1994), pp. 199-219 | Article | MR 1220787 | Zbl 0802.35120
[18] Characterization of bounded mean oscillations, Bull. Amer. Math. Soc., Tome 77 (1971), p. 587-588 | Article | MR 280994 | Zbl 0229.46051
[19] -spaces of several variables, Acta Math., Tome 129 (1972), pp. 137-193 | Article | MR 447953 | Zbl 0257.46078
[20] Bounded Analytic Functions, Academic Press, New York, Pure and Applied Mathematics, Tome 96 (1981) | MR 628971 | Zbl 0469.30024
[21] Estimates of Jacobians by subdeterminants, Journ. of Geometric Anal., Tome 12 (2002), pp. 223-254 | MR 1888516 | Zbl 1053.42024
[22] Remarks on multipliers for on general domains, Kodai Math. J., Tome 16 (1993), pp. 79-89 | Article | MR 1207993 | Zbl 0783.42014
[23] On multipliers for on general domains, Ann. Acad. Sci. Fenn. Ser. A. I. Math., Tome 19 (1994), pp. 143-161 | MR 1274086 | Zbl 0809.42003
[24] Inverting the -harmonic operator, Manuscripta Math., Tome 92 (1997), pp. 249-258 | Article | MR 1428651 | Zbl 0869.35037
[25] Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math., Tome 70 (1991), pp. 203-218 | Article | MR 1085633 | Zbl 0718.58019
[26] Mappings of finite distortion: - integrability, J. London Math. Soc., Tome 67 (2003), pp. 123-136 | Article | MR 1942415 | Zbl 1047.30010
[27] Geometric Function Theory and Nonlinear Analysis, Oxford University Press, New-York (2001) | Zbl 1045.30011
[28] - estimates of Jacobians by subdeterminants, Mathematische Annalen, Tome 324 (2002), pp. 341-358 | Article | MR 1933861 | Zbl 1055.42011
[29] On the integrability of the Jacobian under minimal hypothesis, Arch. Rational Mech. Anal., Tome 119 (1992), pp. 129-143 | Article | MR 1176362 | Zbl 0766.46016
[30] Weak minima of variational integrals, J. Reine Angew. Math., Tome 454 (1994), pp. 143-161 | Article | MR 1288682 | Zbl 0802.35016
[31] Quasiharmonic fields, Ann. I.H. Poincaré Anal. Non Lin., Tome 18 (2001), pp. 519-572 | Article | Numdam | MR 1849688 | Zbl 1068.30011
[32] New and old function spaces in the theory of PDEs and nonlinear analysis, Polish Acad. Sci., Warsaw, Banach Center Publications, Tome 64 (2004) | MR 2099461 | Zbl 1061.46027
[33] A study of Jacobians in Hardy-Orlicz Spaces, Proc. Royal Soc. Edinburgh, Tome 129A (1999), pp. 539-570 | Article | MR 1693625 | Zbl 0954.46018
[34] On functions with conditions on the mean oscillation, Ark. Math., Tome 14 (1976), pp. 189-196 | Article | MR 438030 | Zbl 0341.43005
[35] Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J., Tome 47 (1980), pp. 959-982 | Article | MR 596123 | Zbl 0453.46027
[36] Interpolation between spaces; The complex method, Journ. of Funct. Anal., Tome 48 (1982), pp. 58-80 | Article | MR 671315 | Zbl 0507.46047
[37] On functions of bounded mean oscillation, Comm. Pure Appl. Math., Tome 14 (1961), pp. 415-426 | Article | MR 131498 | Zbl 0102.04302
[38] Carleson measures and the Fefferman-Stein decomposition of , Ann. of Math., Tome 111 (1980), pp. 197-208 | Article | MR 558401 | Zbl 0393.30029
[39] Extension theorems for , Indiana Univ. Math. J., Tome 29 (1980), pp. 41-66 | Article | MR 554817 | Zbl 0432.42017
[40] Interpolation between Hardy spaces, Wadsworth, Belmont, CA, Wadsworth Math. Ser., Tome I, II (Chicago, III, 1981) (1983) | MR 730083 | Zbl 0523.46048
[41] On weak convergence in , Proc. Amer. Math. Soc., Tome 120 (1994), p. 137-138 | Article | MR 1159172 | Zbl 0814.42011
[42] Hardy and Lipschitz spaces on subsets of , Studia Math., Tome 80 (1984), pp. 141-166 | MR 781332 | Zbl 0513.42020
[43] Hardy spaces of exact forms on Lipschitz domains in , Indiana Univ. Math. J., Tome 53 (2004), pp. 583-611 | Article | MR 2060046 | Zbl 1052.42021
[44] Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc., Tome 110 (1990), pp. 961-969 | Article | MR 1075187 | Zbl 0717.46066
[45] spaces over open subsets of , Studia Math., Tome 95 (1990), pp. 205-228 | MR 1060724 | Zbl 0716.42017
[46] A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., Tome 21 (1989), pp. 245-248 | Article | MR 999618 | Zbl 0689.49006
[47] Weak continuity of determinants and nonlinear elasticity, C.R. Acad. Sci. Paris Ser. I Math., Tome 311 (1990), pp. 13-17 | MR 964116 | Zbl 0679.34051
[48] On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré, Anal. Non Lin., Tome 11 (1994), pp. 217-243 | Numdam | MR 1267368 | Zbl 0863.49002
[49] Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Tome 5 (1978), pp. 489-507 | Numdam | MR 506997 | Zbl 0399.46022
[50] Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math., Tome 105 (1993), pp. 105-119 | MR 1226621 | Zbl 0812.42008
[51] Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan, Tome 37 (1985), pp. 207-218 | Article | MR 780660 | Zbl 0546.42019
[52] Theory of Orlicz Spaces, Dekker, New York, Monogr. Textbooks Pure Appl. Math., Tome 146 (1991) | MR 1113700 | Zbl 0724.46032
[53] Grand Sobolev spaces and their applications to variational problems, Le Matematiche (Catania), Tome 51 (1996(1997)) no. 2, pp. 335-347 | MR 1488076 | Zbl 0915.46030
[54] Bounded Toeplitz operators on and applications of the duality between and the functions of bounded mean oscillation, Amer. J. Math., Tome 98 (1976), pp. 573-589 | Article | MR 420326 | Zbl 0335.47018
[55] Note on the class , Studia Math., Tome 32 (1969), pp. 305-310 | MR 247534 | Zbl 0182.47803
[56] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, Princeton Mathematical Series, Tome 43 (1993) | MR 1232192 | Zbl 0821.42001
[57] Bounded mean oscillations with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., Tome 28 (1979), pp. 511-544 | Article | MR 529683 | Zbl 0429.46016
[58] Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal., Tome 100 (1988), pp. 105-127 | Article | MR 913960 | Zbl 0659.73038
[59] Compensated compactness and applications to partial differential equations, Pitman, Boston, Res. Notes in Math, Tome 39 (1979) | MR 584398 | Zbl 0437.35004
[60] A constructive proof of the Fefferman-Stein decomposition of , Acta. Math., Tome 148 (1982), pp. 215-241 | Article | MR 666111 | Zbl 0514.46018
[61] Hardy spaces on the Euclidean space, Springer-Verlag, Tokyo, Springer Monographs in Mathematics (2001) | MR 1845883 | Zbl 0984.42015
[62] Biting theorems for Jacobians and their applications, Ann. I. H. P. Anal. Non Lin., Tome 7 (1990), pp. 345-365 | Numdam | MR 1067780 | Zbl 0717.49012
[63] Espaces de Hardy et domaines de Denjoy, Ark. Mat., Tome 27 (1989), pp. 363-378 | Article | MR 1022286 | Zbl 0682.30030